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The Public Interest Energy Research (PIER) Program supports public interest
energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy
services and products to the marketplace.

The Program’s final report and its attachments are intended to provide a complete
record of the objectives, methods, findings and accomplishments of the Energy
Efficient and Affordable Commercial and Residential Buildings Program. This
attachment is a compilation of reports from Project 2.1, Fault Detection and
Diagnostics for Rooftop Air Conditioners, providing supplemental information to
the final report (Commission publication #P500-03-096). The reports, and
particularly the attachments, are highly applicable to architects, designers,
contractors, building owners and operators, manufacturers, researchers, and the
energy efficiency community.

This document is one of 17 technical attachments to the final report,
consolidating five research reports from Project 2.1:

= Description of Field Test Sites (Feb 2003, rev.)

= Description of FDD Modeling Approach For Normal
Performance Expectation (Dec 2001)

= Description And Evaluation Of An Improved FDD Method For
Rooftop Air Conditioners (Aug 2002)

= Decoupling-Based FDD Approach For Multiple Simultaneous
Faults (June 2003)

»  Automated Fault Detection and Diagnostics of Rooftop Air
Conditioners For California, Final Report and Economic
Assessment (Aug 2003)

The Buildings Program Area within the Public Interest Energy Research (PIER)
Program produced this document as part of a multi-project programmatic
contract (#400-99-011). The Buildings Program includes new and existing
buildings in both the residential and the nonresidential sectors. The program
seeks to decrease building energy use through research that will develop or
improve energy-efficient technologies, strategies, tools, and building
performance evaluation methods.

For the final report, other attachments or reports produced within this contract, or
to obtain more information on the PIER Program, please visit
www.energy.ca.gov/pier/buildings or contact the Commission’s Publications
Unit at 916-654-5200. The reports and attachments, as well as the individual
research reports, are is also available at www.archenergy.com.
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Project 2.1, Fault Detection and Diagnostics for Rooftop Air
Conditioners.

Packaged air conditioners are the most poorly maintained type of HVAC
system. In California, they use about 54% of the HVAC energy in the
commercial sector. The Purdue research team developed thermo-fluids
based fault detection methods that can pinpoint five common maintenance
problems.

= This project was highly successful, resulting in a cost-effective method
to detect simultaneous faults using only temperature sensors and
models of normal operations.

= Controllers that embed these diagnostics methods will save energy and
maintenance costs by providing alerts only when maintenance is
needed and giving the mechanic better information.

= The historical data from the diagnostic system will also serve as a
database for manufacturers to improve the reliability of components.

This document is a compilation of five technical reports from the research.
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1. INTRODUCTION

Purdue University is under contract to Architectural Energy Corporation on behalf of the
California Energy Commission (CEC) to conduct several research projects. This work is
being done under the Building Energy Efficiency Program as part of the CEC’s Public
Interest Energy Research (PIER) Program.

1.1 Purdue Research Projects under this Program

The work at Purdue is focused on four specific projects and is being coordinated under
the direction of Dr. James Braun, P.E. Each project covers different technologies or
concepts that have shown promise for improving energy efficiency in building heating,
ventilation and air conditioning (HVAC) systems. Specifically, the four projects that
Purdue is working on include evaluations and studies of the following. (1) fault detection
and diagnostics (FDD) of rooftop air conditioning units (Project 2.1); (2) demand
controlled ventilation (DCV) assessment (Project 3.1); (3) assessment and field testing of
ventilation recovery heat pumps (Project 4.2); and (4) night ventilation with building

thermal mass (Project 3.2).

The first three of these projects are currently active, with the Project 3.2 scheduled to
start in September of 2001. All four of the projects involve both theoretical analysis and
field demonstration and evaluation. This report describes the field test sites selected for
use in projects 2.1 and 3.1. Monitoring equipment has been installed at modular school
room and restaurant field sites in Northern California. We have an agreement with the
Walgreens Company to allow use of retail store sites in the Los Angeles metropolitan
area, and installation is expected to being in August of 2001. An update to this report

will be issued when the retail store installations are finalized.
1.2 Related Reports

This report describes the field test sites selected for use with the CEC PIER project.
Other related reports submitted in parallel with this report are: (1) “Description of
Laboratory Setup” and (2) “Modeling And Testing Strategies for Evaluating Ventilation

Load Reduction Technologies.



The report “Description of Laboratory Setup” provides a description of the York rooftop
unit and Honeywell Demand Controlled Ventilation system that are installed outside the
Purdue Herrick Laboratory and the instrumentation used for monitoring the setup.. This
setup follows closely the field site setups in California. The instrumentation includes
measurement of system temperatures, pressures, relative humidities and carbon dioxide
concentrations. The Laboratory Setup report covers in detail the setup and operation of
the Virtual Mechanic hardware and ACRx ServiceTool Suite of monitoring software,
both provided by Field Diagnostic Services. Finally, the report describes the general

process for collecting and retrieving data downloaded from the field test sites.

The “Ventilation Strategy Analysis” report presents an overview of the modeling
approach and input data to be used in evaluating the energy savings associated with
several ventilation load reduction technologies. In addition, an overview of the
preliminary test plan and field site monitoring setup for the heat pump heat recovery unit

is given.



2. SELECTION OF FIELD TEST SITES

Projects 2.1 and 3.1 involve the use of 12 common field sites for evaluation of FDD and
demand-controlled ventilation. In these two projects, field performance data will be
obtained from heating/cooling units. Three different building types are being utilized in

two different climate zones.

2.1 Criteria for selection of the building types

All of the Purdue projects are focused on small commercial buildings that utilize
packaged air conditioning and heating equipment. The criteria used for selecting the
types of buildings to include as field test sites focused on the typical building occupancy
schedule, the building size and typical HVAC system installed, and the ability to identify
multiple sites of similar design and construction within the same climate region. To
reduce costs, the same test buildings are being used for the field studies in Projects 2.1
(fault detection and diagnostics) and 3.5 (demand-controlled ventilation). Earlier studies
on demand-controlled ventilation indicated that the greatest benefits (in terms of energy
savings) are possible with buildings that have variable occupancy schedules. Thus, the
three building types selected for the field test sites are smaller retail stores, restaurants
and schools. For each type of building, two nearly identical sites will be used in two
different climates. This will allow comparative analysis of the energy savings associated
with demand-controlled ventilation in terms of building type and climate. The fault
detection and diagnostics project is focused strictly on small commercial packaged air
conditioning units, so the field sites provide a range of equipment for demonstration and
evaluation of this technology. A single site will be used to demonstrate a heat pump heat
recovery unit. However, the data obtained from the demand-controlled ventilation sites
can also be used to estimate savings for the heat pump heat recovery unit if it were

installed in these additional sites.

A large number of modular schoolrooms are installed throughout the state of California.

These rooms are all very similar in design and construction, and all typically use wall



mounted heat pumps for heating and cooling. One advantage of the modular schoolroom

for this study is that essentially identical rooms can be monitored side-by-side.

For the restaurant building type, the systems used to condition the children’s play areas
that are common in many fast food chains will be monitored. These rooms typically are
self-contained, or nearly so, and only require one or two rooftop units for cooling and
heating. By monitoring only the play areas in these restaurants, the study can gather data
on spaces that have the greatest variability in occupancy, and also will eliminate the

effects of the kitchen area and its associated ventilation systems.

The third building type selected is a small retail store. Small retail stores can have an
extremely wide variation in occupancy patterns. Chain stores were considered for the

study since essentially identical buildings can be found.

2.2 California Climate Types

Although California has a wide range of climate types, much of the state can be
characterized as a Mediterranean climate. This climate type experiences warm, dry
summers and temperate moist winters. The state also includes desert regions in southern
California (such as Palm Springs) and coastal regions. The specific climate type for a
given locality may vary significantly within a small distance due to the influence of
factors such as topology and the proximity to the ocean. Some of the best examples of
these variations occur in the San Francisco Bay area where the distance of just a few

miles can lead to significant variations in rainfall patterns and sky conditions

2.3 Method for selecting sites

It is not possible within the scope of this project to evaluate the new technologies for all
possible climate regions in California using field data. However, it will be possible to
perform more extensive evaluations through simulation. For the field studies,

representative buildings were selected in two different macroclimate types (coastal and



inland). In addition, some of the selected sites are in northern California and some are in
southern California, which gives as wide a range of location and climate type as practical
within the context of these projects. The inland sites vary from the Mediterranean
climate type of the Central Valley around Sacramento to the desert regions around Palm
Springs. Although it was not possible to have field sites for all technologies in all climate
regions, the areas selected for study represent those with the greatest concentration of

population and commercial development.

Before the projects officially started, contacts were made with the owners of potential
building sites within the school, restaurant and retail store categories. The identification
of sites has been a time consuming process that has required the help of several of the
participating organizations, including Honeywell, Schiller Associates, Carrier

Corporation, Southern California Edison, and Architectural Energy Corporation.

The first buildings identified were schools. During the summer of 2000, contacts were
made and meetings held with representatives of the Oakland Unified School District and
the Woodland Joint Unified School District. Woodland is approximately 20 miles west
of Sacramento and represents an inland climate type. The monitoring systems were
installed at two rooms located side-by-side at each of the two school districts in

December of 2000. More details on these sites are contained later in this report.

The restaurant building type is represented by two franchisee owned McDonald’s stores
in the Sacramento area and by two corporate owned stores on the southeastern San
Francisco Bay area. These stores have PlayPlace areas with similar construction and
HVAC system installations, although it was not possible to find stores with identical
design and sun orientation. Sun orientation can be particularly important for the
PlayPlace areas, since they typically include a large percentage of glass area.
Monitoring equipment was installed in the Sacramento McDonalds during the middle of
March, 2001. In the San Francisco Bay Area, a representative of McDonalds corporate
office identified two stores for inclusion in our study that will be the best fit for our
needs. Monitoring equipment were installed in May of 2001 at these two stores. More

details on these sites are also given in the later sections of this report.



The retail stores are in Southern California. The Walgreens corporation has agreed to our
using their stores as part of this program. Monitoring systems are installed at stores
located in Rialto (near Riverside) and Anaheim. The Rialto store is located in a near

desert climate, while Anaheim is a more coastal climate type.



3. DESCRIPTION OF FIELD TEST SITES

Figure 1 presents a general overview of how data are monitored and collected from the
field sites. Proprietary equipment from Honeywell controls ventilation dampers using
economizer and demand-control ventilation algorithms. The Honeywell controller
incorporates sensors to measure ambient temperature and humidity, return air
temperature and carbon-dioxide concentration, and mixed air temperature. Additional
sensors are installed to monitor other air state variables, refrigerant states, power
consumption, and operational status. The primary data acquisition is accomplished using
hardware from Field Diagnostics Services (FDS) called the Virtual Mechanic (VM). The
VM communicates with the Honeywell controller across an RS485 network to obtain
sensor information and to change control strategies. The additional sensors are wired
directly to the VM. Data are sampled at approximately 5-minute intervals and are stored
in the VM. For some field sites, multiple VMs are employed for multiple packaged air
conditioners. Data are downloaded each day using cell phones connected to the master

Virtual Mechanic at each test site.

A detailed description of the field test sites is provided in the following subsections.
Some of the detailed technical information needed to simulate the performance of the
different technologies for these buildings will be compiled later in the project. This

section contains information on the following test sites:
e Modular School Rooms — Inland Climate Type
e Modular School Rooms — Coastal Climate Type
e Fast Food Restaurants — Inland Climate Type
e Fast Food Restaurants — Coastal Climate Type
e Retail Stores — Inland Climate

e Retail Stores — Coastal Climate



Fioure 1 — Field Test Sites Data Collection and Communication Overview
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BUILDING TYPE:

Inland Climate Locations

ADDRESS:

Modular School Rooms

Gibson Elementary School
312 Gibson Road
Woodland, CA 95695
(530) 662-3944

EQUIPMENT INSTALLATION DATE: December 14-19, 2000

CELL PHONE NUMBER:

(765) 427-0311

DETAILED BUILDING DESCRIPTION:

Floor Area

20 feet by 40 feet (800 sq. ft.)

Building Orientation

East — West

Wall Construction

Walls are 2x4 stud construction with R-11 insulation.
Internal walls have %2 vinyl covered fiberboard over
°/s” gypsum wallboard.

Windows/ Shading

Wood panel exterior with no windows on south or
north sides. East and west sides have one 4’ x 8’
window, with door on east side. Two-foot overhang
on west wall and three-foot overhang on east wall
entrance area.

Windows are double-pane with %4 air gap.

Roof/Ceiling Construction

Flat roof with reflective paint coating. Roof has R-19
insulation. Interior drop ceiling is 8 above occupied
space with t-bar 18” below the roof.

Floor Crawl space below is ventilated with R-11 insulation
below floor.
Lighting 10 sets of fluorescent lights, 120 W each with

magnetic ballast.

Other Loads and
Equipment

One desktop computer and one small refrigerator.

Occupancy Patterns

8:30 am to 3:00 pm weekdays. Usually one or two
hours on Saturday mornings.

The rooms are occupied by 15-20 small children per
room, plus teacher. (These are kindergarten — first
grade rooms.)




Gibson School (Cont’d)

Woodland School Site — Woodland School Site —
Rear View Looking East Front View Looking West

Each building (modular school room) has its own packaged air conditioner/heat pump.
Two side-by-side units have been retrofit with the Honeywell economizer and demand
control ventilation system and fully instrumented. Two VMs are networked together
with one of units linked to a cell phone. The heat pump units were originally set up for
fixed percentage of outdoor air, and did not have outdoor air flow control dampers. It
was estimated that, based on the installation configuration, the airflow control was set up

for approximately 15% outdoor air at these sites before the retrofit.
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HEATING / AIR CONDITIONING EQUIPMENT:

Each building (room) has a sidewall-mounted heat pump as described in the table below.

Manufacturer Bard Manufacturing

Model WH 421-A

Nominal Cooling Capacity | 3’2 Tons

Number of Stages 1

SEER / HSPF 10.0/6.8

Supplemental Heating 10 kW nominal electric resistance heater.
Capacity

Electrical Single phase, 220 V

Supply Fan Rating 1400 cfm @ 0.3”

TEST INSTRUMENTATION:

Table 1 lists the input data channels used at the modular schoolrooms. The same data list

1s used at both the Woodland and Oakland school sites.
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Table 1 — Data List for Modular School Room Field Test Sites

Channel # Data Point
Power Transducer Channels

1 Unit voltage

2 Compressor 1 voltage
3 Common

4 Unit total current

5 Compressor 1 current

6-8 Spare - Not Used

Other Analog Input Data

9 Suction line pressure, Stage 1

10 Liquid line pressure, Stage 1

11-14 Spare - Not Used

15 Mixed air temperature

16 Return air temperature

17 Supply air temperature, before heater

18 Supply air temperature, after heater

19 Condenser inlet air temperature

20 Condenser outlet air temperature

21 Suction line temperature, Stage 1

22 Discharge line temperature, Stage 1

23 SPARE - Used as additional ambient T
24 SPARE - Used as additional ambient T
25 Evaporation temperature, Stage 1
26 Condensation temperature, Stage 1

27- 32 Spare - Not Used

Calculated Data Channels

33-50 NOT USED
51 Honeywell DCV indoor (and outdoor) CO2 conc.
52 Honeywell DCV mixed air temperature
53 Honeywell DCV return air temperature
54 Honeywell DCV return / outdoor humidity
55 Honeywell DCV outdoor air temp & damper position
56 Honeywell DCV minimum damper position
57 superheat, stage 1
58 subcooling, stage 1
59 evaporating temperature, stage 1
60 condensing temperature, stage 1
61 condensing temperature over ambient (CT-AIC), stage 1
62 superheat, stage 2
63 subcooling, stage 2
64 evaporating temperature, stage 2
65 condensing temperature, stage 2
66 condensing temperature over ambient (CT-AIC), stage 2

12



Table 1 — Data List for Inland Modular School Room Field Test Site (Cont’d)

Channel Data Point

67 evaporator temperature difference (RA-SA)

68 NOT USED

69 NOT USED

70 unit power (kW)

71 unit KWh

72 unit MWh

73 compressor 1 power (kW)

74 compressor 1 KWh

75 compressor 1 MWh

76 compressor 2 power (kW)

77 compressor 2 KWh

78 compressor 2 MWh

79 digital input 1, supply fan, run time (8 hours)

80 digital input 1, supply fan, run time (seconds)

81 digital input 2, cooling 1, run time (8 hours)

82 digital input 2, cooling 1, run time (seconds)

83 digital input 3, cooling 2, run time (8 hours)

84 digital input 3, cooling 2, run time (seconds)

85 digital input 4, heat 1, run time (8 hours)

86 digital input 4, heat 1, run time (seconds)

(
87 digital input 5, heat 2, run time (8 hours)
88 digital input 5, heat 2, run time (seconds)

89 digital input 6 run time (8 hours)

90 digital input 6 run time (seconds)

91 time since reset accumulators (8 hours)

92 time since reset accumulators (seconds)

93 up time (8 hours)

94 up time (seconds)

05 board temperature (F)

96 board battery voltage (V)

Digital Channels
Supply fan contact (fan on / fan off)

Low voltage control signal for compressor contact

Spare

Heat on

Electric heat

DA R WN -
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BUILDING TYPE:

Coastal Climate Location

ADDRESS:

Modular School Rooms

Fremont High School
4610 Foothill Blvd.
Oakland, CA

(510) 879-3020

EQUIPMENT INSTALLATION DATE: December 19-21, 2000

CELL PHONE NUMBER:

DEtAILED DESCRIPTION:

(765) 427-0325

Floor Area

20 feet by 40 feet (800 sq. ft.)

Building Orientation

East — West

Wall Construction

Walls are 2x4 stud construction with R-11 insulation.
Internal walls have %2 vinyl covered fiberboard over
°/s” gypsum wallboard.

Windows/ Shading

Wood panel exterior with no windows on south or
north sides. East and west sides have one 4’ x 8’
window, with door on east side. Two-foot overhang
on west wall and three-foot overhang on east wall
entrance area.

Windows are double-pane with %4 air gap.

Roof/Ceiling Construction

Flat roof with reflective paint coating. Roof has R-19
insulation. Interior drop ceiling is 8” above occupied
space with t-bar 18” below the roof.

Floor Crawl space below is ventilated with R-11 insulation
below floor.
Lighting Approximately 10 sets of fluorescent lights, 120 W

each with magnetic ballast.

Other Loads and
Equipment

One desktop computer. (To be verified)

Occupancy Patterns

8:30 am to 3:00 pm weekdays.

The rooms are occupied by 15-20 high school
students per classroom.

14




Fremont High School (Cont’d)

Oakland School Site (Fremont High

School) - View Looking Along North Walls

Each building (modular school room) has its own packaged air conditioner/heat pump.
Two side-by-side units have been retrofit with the Honeywell economizer and demand
control ventilation system and fully instrumented. Two VMs are networked together
with one of units linked to a cell phone. The heat pump units were originally set up for
fixed percentage of outdoor air, and did not have outdoor air flow control dampers. It
was estimated that, based on the installation configuration, the airflow control was set up

for approximately 15% outdoor air at these sites before the retrofit.
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HEATING / AIR CONDITIONING EQUIPMENT:

Each building (room) has a sidewall-mounted heat pump manufactured by Bard
Industries, Model WH 421A. These are the same units as used at the Woodland school

site. The units are contained within a fenced off area on the north end of the buildings.

Nominal Cooling Capacity | 3’2 Tons

SEER / HSPF 10.0/6.8

Heating Capacity 10 kW nominal electric resistance heater. Note: The
electrical resistance heaters are not functioning for
these rooms.

Electrical Single phase, 220 V

Supply Fan Performance 1400 cfm @ 0.3”

TEST INSTRUMENTATION:

The Fremont school site uses the same data point list given in Table 1 for the Woodland

schools.
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BUILDING TYPE: Fast Food Restaurants

Inland Climate Locations

ADDRESS: McDonalds Restaurant
2434 Watt Ave.
Sacramento, CA 95821
(916) 971-0244

3560 Bradshaw Road
Sacramento, CA 95827
(916) 361-8186

CONTACT: Mike Godlove (Owner)
2508 Garfield Ave
Carmichael, CA 95608
(916) 483-6065

EQUIPMENT INSTALLATION DATE: March 12-14, 2001

CELL PHONE NUMBERS: (765) 427-7714 and 427-7919

DEtAILED DESCRIPTION:

Equipment at two nearly identical McDonald’s PlayPlaces in Sacramento have been
retrofit with the Honeywell economizer and demand control ventilation system and fully
instrumented. Each system has its own dedicated VM with a cell phone for data
transmission. The Watt Avenue site has a slightly smaller floor area (approximately 20
square feet less take from two corners). The following subsections give some details on

the building construction and operation. Additional details will be obtained later.

17



Sacramento Area McDonalds PlayPlace Construction (Watt Avenue and Bradshaw

Road)

Floor Area

Approximately 20 feet by 30 feet (600 sq. ft.) that is
for the most part isolated from the dining and
cooking areas.

Building Orientation

Primary axis for this room is North - South.

Major glass surfaces on the East and South walls.
West face is interior wall shared with the dining area.

Wall Construction

“Stucco” exterior covering.

Windows/ Shading

Major glass surfaces on the East and South walls.
West face is interior wall shared with the dining area.
Some window area on North wall. No exterior
shading. Windows are tinted with double pane, '4”
air gap construction.

Roof/Ceiling Construction

Flat roof with light colored asphalt coating.

Floor

Tile on slab construction.

Lighting

Approximately six sets of fluorescent lights, with
four bulbs each with magnetic ballast.

Other Loads and
Equipment

Some air exchange with dining area and outdoor air
via door in the common vestibule.

Ceiling fans keep air in motion.

Occupancy Patterns

PlayPlace hours are: 9 am to 9:30 pm.

Occupancy varies from 0 to a maximum of
approximately 40.

18




Watt Avenue (Sacramento Area) McDonalds PlayPlace Pictures

Watt Avenue McDonalds —
View Looking Southwest

Interior view of Watt Avenue
McDonalds PlayPlace Area showing
location of return air and supply air
ducts.

- > A - < -‘ &;ZI-'-
Watt Avenue McDonalds —
Rooftop Units Undergoing Equipment Installation
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Bradshaw Road (Sacramento Area) McDonalds PlayPlace Pictures

Bradshaw Road McDonalds —

View I .ankino Narthwest

Rooftop Units Undergoing Equipment Installation

HEATING / AIR CONDITIONING EQUIPMENT:

Each PlayPlace uses rooftop-mounted units for providing heating, cooling and ventilation
air to the room. The two sites differ in the number of rooftop units used, with the Watt
Avenue building using one two-stage unit and the Bradshaw Road building using two
smaller single-stage units. According to York International's regional support
representative, the units are custom designed for supply to McDonalds Corporation for

the PlayPlace areas. The following tables describe the units used at each site. Since they

20



are custom designs, published performance ratings and other technical details were not

readily available. This information will be obtained later.

Watt Avenue

Manufacturer York International

Model D3CGI120N20025MKD
Nominal Cooling Capacity | 10 Tons

Number of Stages 2

SEER / HSPF TBD

Heating Capacity 200,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

4,000 cfm manufacture rated

Bradshaw Road

Manufacturer York International

Model DICGO072N07925ECC
Nominal Cooling Capacity | 6 Tons

Number of Stages 1

SEER / HSPF TBD

Heating Capacity 100,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

2,400 cfm manufacture rated (each)

21




TEST INSTRUMENTATION:

Tables 2 and 3 list the data channels used at the restaurants. A slightly different list is
required for each site since the HVAC equipment setup is different. In particular, the
Watt Avenue site has one larger (10 ton) unit with 2-stage cooling to condition the entire
room. The Bradshaw Road site, on the other hand, has two smaller (6 ton) single-stage
cooling units operating in parallel. Instrumentation for fault detection and diagnostics
and monitoring was set-up for one rooftop unit per site, as originally planned in the
project proposal stage. Therefore, one unit at the Bradshaw Road site was fully
instrumented for both FDD and DCV purposes, while the second unit was instrumented
only for the purposes of collecting data for the DCV project. The Watt Avenue site has
only one rooftop unit and was fully instrumented according to the standard data list. All

data will be collected using one Virtual Mechanic at each site.
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Table 2 — Data List for Inland Restaurant Field Test Site (Watt Avenue)

Channel # Data Point
SENSOR CHANNELS
Power Transducer Channels
1 Unit voltage
2 Compressor 1 voltage
3 Compressor 2 voltage
4 Unit total current
5 Compressor 1 current
6 Compressor 2 current
Other Analog Input Data
7 SPARE - Not used
8 SPARE - Not used

9 Suction line pressure, Stage 1
10 Discharge pressure, Stage 1
11 Suction line pressure, Stage 2

12 Discharge pressure, Stage 2
13 SPARE - Not used
14 SPARE - Not used
15 Mixed air temperature
16 Return air temperature
17 Supply air temperature, before heater
18 Supply air temperature, after heater
19 Condenser inlet air temperature
20 Condenser outlet air temperature
21 Suction line temperature, Stage 1
22 Discharge line temperature, Stage 1
23 Liquid line temperature before filter/drier, Stage 1
24 Liquid line temperature after filter/drier, Stage 1
25 Evaporation temperature, Stage 1
26 Condensation temperature, Stage 1
27 Suction line temperature, Stage 2
28 Discharge line temperature, Stage 2
29 Liquid line temperature before filter/drier, Stage 2
30 Liquid line temperature after filter/drier, Stage 2
31 Evaporation temperature, Stage 2
32 Condensation temperature, Stage 2
Calculated Data Channels
33-50 NOT USED
51 Honeywell DCV indoor (and outdoor) CO2 conc.
52 Honeywell DCV mixed air temperature
53 Honeywell DCV return air temperature
54 Honeywell DCV return / outdoor humidity
55 Honeywell DCV outdoor air temp & damper position
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Table 2 — Data List for Inland Restaurant Field Test Site (Watt Avenue) — Cont’d

Channel Data Point

56 Honeywell DCV minimum damper position
57 superheat, stage 1

58 subcooling, stage 1

59 evaporating temperature, stage 1

60 condensing temperature, stage 1

61 condensing temperature over ambient (CT-AIC), stage 1
62 superheat, stage 2

63 subcooling, stage 2

64 evaporating temperature, stage 2

65 condensing temperature, stage 2

66 condensing temperature over ambient (CT-AIC), stage 2
67 evaporator temperature difference (RA-SA)
68 NOT USED

69 NOT USED

70 unit power (kW)

71 unit KWh

72 unit MWh

73 compressor 1 power (kW)

74 compressor 1 KWh

75 compressor 1 MWh

76 compressor 2 power (kW)

77 compressor 2 KWh

78 compressor 2 MWh

79 digital input 1, supply fan, run time (8 hours)
80 digital input 1, supply fan, run time (seconds)
81 digital input 2, cooling 1, run time (8 hours)
82 digital input 2, cooling 1, run time (seconds)
83 digital input 3, cooling 2, run time (8 hours)
84 digital input 3, cooling 2, run time (seconds)
85 digital input 4, heat 1, run time (8 hours)

86 digital input 4, heat 1, run time (seconds)
87 digital input 5, heat 2, run time (8 hours)

88 digital input 5, heat 2, run time (seconds)
89 digital input 6 run time (8 hours)

90 digital input 6 run time (seconds)

9 time since reset accumulators (8 hours)

92 time since reset accumulators (seconds)
93 up time (8 hours)

94 up time (seconds)

95 board temperature (F)

96 board battery voltage (V)
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Table 2 — Data List for Inland Restaurant Field Test Site (Watt Avenue) — Cont’d

Digital Channels

Supply fan contact (fan om / fan off)

Low voltage control signal for compressor 1 contact
Low voltage control signal for compressor 2 contact
Heating 1

Heating 2

DR WN -~
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Table 3 — Data List for Inland Restaurant Field Test Site (Bradshaw Road)

Channel # Data Point
SENSOR CHANNELS
Power Transducer Channels
1 Unit 1 input voltage
2 Compressor voltage, Unit 1
3 Unit 2 input voltage
4 Unit 1 total current
5 Compressor current, Unit 1
6 Unit 2 total current
Other Analog Input Data
7 SPARE - Not used
8 SPARE - Not used
9 Suction line pressure, Unit 1
10 Discharge pressure, Unit 1
11 SPARE - Not used
12 SPARE - Not used
13 SPARE - Not used
14 SPARE - Not used
15 Mixed air temperature - Unit 1
16 Return air temperature - Unit 1
17 Supply air temperature, before heater - Unit 1
18 Supply air temperature, after heater - Unit 1
19 Condenser inlet air temperature - Unit 1
20 Condenser outlet air temperature - Unit 1
21 Suction line temperature - Unit 1
22 Discharge line temperature - Unit 1
23 Liquid line temperature before filter/drier - Unit 1
24 Liquid line temperature after filter/drier - Unit 1
25 Evaporation temperature - Unit 1
26 Condensation temperature - Unit 1
27 SPARE - Not used
28 SPARE - Not used
29 Mixed air temperature - Unit 2
30 Mixed air humidity - Unit 2
31 Supply air temperature - Unit 2
32 Supply air humidity - Unit 2
CALCULATED DATA CHANNELS
33-50 NOT USED
51 Honeywell DCV indoor (and outdoor) CO2 conc.
52 Honeywell DCV mixed air temperature
53 Honeywell DCV return air temperature
54 Honeywell DCV return / outdoor humidity
55 Honeywell DCV outdoor air temp & damper position
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Table 3 — Data List for Inland Restaurant Field Test Site (Bradshaw Road) — Cont’d

Channel Data Point

56 Honeywell DCV minimum damper position
57 superheat, stage 1

58 subcooling, stage 1

59 evaporating temperature, stage 1

60 condensing temperature, stage 1

61 condensing temperature over ambient (CT-AIC), stage 1
62 NOT USED

63 NOT USED

64 NOT USED

65 NOT USED

66 NOT USED

67 NOT USED

68 NOT USED

69 NOT USED

70 unit power (kW)

71 unit KWh

72 unit MWh

73 compressor 1 power (kW)

74 compressor 1 KWh

75 compressor 1 MWh

76 compressor 2 power (kW)

77 compressor 2 KWh

78 compressor 2 MWh

79 digital input 1, supply fan, run time (8 hours)
80 digital input 1, supply fan, run time (seconds)
81 digital input 2, cooling 1, run time (8 hours)
82 digital input 2, cooling 1, run time (seconds)
83 digital input 3, cooling 2, run time (8 hours)
84 digital input 3, cooling 2, run time (seconds)
85 digital input 4, heat 1, run time (8 hours)

86 digital input 4, heat 1, run time (seconds)
87 digital input 5, heat 2, run time (8 hours)

88 digital input 5, heat 2, run time (seconds)
89 digital input 6 run time (8 hours)

90 digital input 6 run time (seconds)

91 time since reset accumulators (8 hours)

92 time since reset accumulators (seconds)
93 up time (8 hours)

94 up time (seconds)

95 board temperature (F)

96 board battery voltage (V)
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Table 3 — Data List for Inland Restaurant Field Test Site (Bradshaw Road) — Cont’d

Digital Channels

Supply fan contact (fan om / fan off)

Low voltage control signal for compressor contact
Spare

Heating

Spare

DB WN -~
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BUILDING TYPE: Fast Food Restaurants

Coastal Climate Locations

ADDRESS: 99 N. Milpitas Blvd.
Milpitas, CA 95035
(408) 263-0181

1620 Storbridge Ave.
Castro Valley, CA 94546
(510) 537-9566

CONTACT: Paul Martin
(408) 422-2339

EQUIPMENT INSTALLATION DATE: May 2001

CELL PHONE NUMBERS: (765) 427-2988
(765) 427-3052

DETAILED DESCRIPTION:

The PlayPlace areas at these two sites are not as close in design and orientation as are the
two Sacramento sites. This is a compromise in order to get two sites that are reasonably
close together and in a similar coastal climate zone. Both restaurants are located south of
Oakland on the east edge of the San Francisco Bay and have a floor space of around 1300
square feet, which is larger than the PlayPlace areas at the two Sacramento stores. The
Castro Valley restaurant is oriented with its main glass area facing west. The Milpitas
store, however, contains a larger glass area and is oriented facing north. The following
subsections contain some descriptions of the room construction and heating/cooling
equipment for these two coast climate restaurant sites. Additional details of the

construction and building operation will be obtained later.
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Castro Valley (San Francisco Bay Area) McDonalds PlayPlace Construction

Floor Area

Approximately 26 feet by 50 feet (1300 sq. ft.) that is
isolated from the dining and cooking areas by an
interior glass wall with two doors.

Building Orientation

Primary axis for this room is northwest - southeast.

The long axis glass surface area faces southwest, with
the smaller sides facing northwest and southeast.
Northeast wall is interior wall shared with the dining
area.

Wall Construction

“Stucco” exterior covering.

Windows/ Shading

Windows are tinted with double pane, /4” air gap
construction. Overhang of 24” at top that provides
minimal shading.

Total glass area of about 490 sq. ft. on southwest wall
and 195 sq. ft. each on the northwest and southeast
walls.

Roof/Ceiling Construction

Flat roof with light colored asphalt coating.

Floor

Tile on slab construction.

Lighting

Total of 26 fixtures of 48” fluorescent lights, with
four bulbs each with magnetic ballast. Several had
missing bulbs, only approximately 80% of bulbs in
place.

Other Loads and
Equipment

One TV and four video games.

Ceiling fans keep air in motion.

Occupancy Patterns

PlayPlace operating hours are 9am — 9pm.

During visit on a Sunday afternoon, occupied by
approximately 70 children and adults.
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Milpitas (San Francisco Bay Area) McDonalds PlayPlace Construction

Floor Area

Approximately 24 feet by 50 feet with 6’ by 6’ corner
that shares internal wall with kitchen storage. Total
floor is approximately 1170 sq. ft. Zone is isolated
from the dining and cooking areas by an interior glass
wall with two doors.

Building Orientation

Primary axis for this room is east - west.

The long axis glass surface area faces north, with the
smaller sides facing west and east. South wall is
interior wall shared with the dining area.

Wall Construction

“Stucco” exterior covering.

Windows/ Shading

Windows are tinted with double pane, %4 air gap
construction. Overhang of 24” at top that provides
minimal shading.

Exterior walls are essentially floor to ceiling covered
in glass. Total glass area of about 1000 sq. ft. on
north wall, 480 sq. ft. on the east wall and 360 sq. ft.
on the west wall.

Roof/Ceiling Construction

Flat roof with light colored asphalt coating.

Floor

Tile on slab construction.

Lighting

Total of 19 fixtures of 48” fluorescent lights, with
four bulbs each with magnetic ballast.

Other Loads and
Equipment

No TVs or video games.

Ceiling fans keep air in motion.

Occupancy Patterns

PlayPlace operating hours are 8am — 9pm.
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Castro Valley McDonalds PlayPlace Pictures

Interior view of Castro Valley McDonalds
PlayPlace Area.

Castro Valley McDonalds —
View Looking Southeast

T g~

Castro zﬁléy McDonalds PlayPlace e
York Rooftop Unit
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Milpitas McDonalds PlayPlace Pictures

Milpitas McDonalds —
View Looking Southeast

Interior view of Milpitas McDonalds
PlayPlace Area (NW Corner)

Milpitas McDonalds PlayPlace Area.
Two York Rooftop Units

HEATING / AIR CONDITIONING EQUIPMENT:

Each building (room) uses rooftop-mounted units for providing heating, cooling and
ventilation air to the room. The two sites differ in the number of rooftop units used. Just
like the two restaurants in Sacramento, one restaurant uses one two-stage Y ork rooftop
unit (Castro Valley) and the other (Milpitas) uses two smaller single-stage units. The
units are of the same series that were designed and built specifically for the McDonalds

PlayPlace areas. The following tables describe the units used at each site. Since they are
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more or less custom design, published performance ratings and other technical details

were not readily available.

Castro Valley

Manufacturer York International

Model D4CGI150N16525MDB
Nominal Cooling Capacity | 12 Tons

Number of Stages 2

SEER / HSPF TBD

Heating Capacity 204,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

4,000 cfm manufacture rated

Milpitas

Manufacturer York International

Model D1CG072N09925C

Nominal Cooling Capacity | 6 Tons

Number of Stages 1

SEER / HSPF TBD

Heating Capacity 125,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

2,400 cfm manufacture rated (each)
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TEST INSTRUMENTATION:

Similar test instrumentation will be used as for the Sacramento McDonalds. The system
at the restaurant with only one rooftop unit (Castro Valley) will be fully instrumented for
both FDD and DCV studies, like the Watt Avenue site in Sacramento. The data list is
presented in Table 2. The Milpitas site is analogous to the Bradshaw Road store in
Sacramento, whereby one unit will be fully instrumented for both FDD and DCV
purposes, while the second unit will be instrumented only for the purposes of collecting
data for the DCV project. Table 3 provides this data list. All data will be collected using

one VM at each site.
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BUILDING TYPE: Retail Store

ADDRESS:

Inland Climate Location Walgreens
550 S. Riverside
Rialto, CA
Contact: Gabriel Reyes (Store Manager)
(709) 874-6600

Coastal Climate Location Walgreens
946 S. Brookhurst
Anaheim, CA
Contact: Lee Anderson (Store Manager)
(714) 520-5444

EQUIPMENT INSTALLATION DATES:
Rialto Store: VM Monitoring Equipment: August 1-5, 2001
Functioning Honeywell Controls: June, 2002

Anaheim Store: VM Monitoring Equipment: June, 2002
Functioning Honeywell Controls: Fall 2002

CELL PHONE NUMBERS: Dedicated land phone lines were installed in August
2002 to replace the cell phone arrangement.

DETAILED BUILDING DESCRIPTION: Rialto Store (Common Design)

Floor Area 100 feet by 90 feet (9,000 sq. ft.) in retail store space,
40 feet by 20 feet in the pharmacy. An additional 35
feet by 90 feet of backroom storage and 20 feet by
100 feet for office and equipment that is not part of

the DCV study.

Building Orientation Generally north - south, with front door on northeast
corner.

Wall Construction Brick and stucco exterior.

Windows/ Shading A total of 20 windows on the two exterior walls to

the retail store area. Windows are 5 feet by 8 feet,
tinted, double-pane with %4 air gap. Windows are
on the east and north walls.

A five-foot overhang covers the sidewalk and shades
the exterior windows.
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Roof/Ceiling Construction | Flat roof with light store coating.

Floor Floor tiles over concrete slab.

Lighting Retail store has total of 170 fixtures with 2 bulbs, 8-
foot long fluorescent lights.

Pharmacy has 33 fixtures of 2 bulb, four-foot long

fixtures.
Other Loads and Refrigerated drink and food open to store, 25 feet
Equipment linear feet.

Freezer section with doors, 20 feet long.

Photo processing machine plus two cash registers.

Occupancy Patterns Store hours are 8 am to 10 pm, seven days a week.

HEATING / AIR CONDITIONING EQUIPMENT:

Four rooftop heat pumps condition the retail store space and one additional unit is
dedicated to the pharmacy area. A separate unit is installed at the store to condition the
storage room, but since this is an isolated area not normally occupied, it is not part of the

DCYV installation study. The rooftop units are manufactured by Trane.

Manufacturer Trane

Model WFDO090C30BBC - Retail Store
WFDO075C30BBC - Pharmacy

Nominal Cooling Capacity | Retail store units - 7% tons

Retail store units - 6% tons

Number of Stages 1
SEER / HSPF 8.9 EER
Electrical Three phase, 208 V

Supply Fan Performance 2,500 nominal supply airflow @ 0.5 in. w.c. - 6%
tons

3,000 nominal supply airflow @ 0.5 in. w.c. - 7%
tons
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TEST INSTRUMENTATION:

Similar test instrumentation is used as for the McDonalds sites. Individual VM
monitoring systems are installed for each rooftop unit, and networked together to one
master VM that communicates via the cell phone. These rooftop units are single stage

compressor systems, and the same monitoring data as listed in Table 3 are used.

Trane rooftop heat pump installed on Walgreens Rialto store
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4. TESTING PLAN
This test plan as outlined below was set up during the initial phases of the project.

The test plan has changed as the result of equipment installation schedules and
problems. The field sites were rotated more regularly between demand control
ventilation ON and OFF remotely using procedures developed by Field Diagnostic

Services.

Data is downloaded on a daily basis using cell phones connected to the master Virtual
Mechanic at each test site. The data monitoring and collection process was outlined

earlier in this report in Figure 1.
There are separate test plans for the two projects that share the 12 field test site buildings.

Project 2.1: Fault Detection and Diagnostics

A testing plan for this project is included in a separate report being submitted by Purdue
for deliverable 2.1.1b. This report is titled, “Description of Laboratory Setup” and was

described in Section 1.2 above.

Project 3.1: Demand Controlled Ventilation

The following is a general overview of the testing plan for Project 3.1. The separate
report titled “Modeling and Testing Strategies for Evaluating Ventilation Load Recovery
Technologies” being submitted by Purdue describes how the data being collected will be

analyzed.
Key parameters to measure for this project are:

= Unit power consumption for the compressors and fans.

* Energy input during heating mode. This will be expressed either in terms of
compressor and electrical resistance heater power for the sites with heat pump

heating, or in terms of natural gas usage for rooftop units with heating.
= Total cycle time for compressor (and heater) operation.

= Levels of carbon dioxide in the occupied space.
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* Temperature and humidity levels for the ambient air, mixed air, supply air and the

conditioned space.
The following is a general outline of the data gathering and test plan.
SCHOOQOLS:

March — May 2001: Monitor building performance for each of the four schoolrooms.

Use this data to build baseline data for each room.

May — June, 2001: For the remaining part of this school year, set up one building at each
site to run in Demand Controlled Ventilation (DCV) mode and the other building with the
standard economizer mode. During this time visit each room and characterize the

nominal usage patterns, etc.

Summer, 2001 (June-August): If the rooms are not to be occupied regularly during the
summer months when regular school is not in session (mid-June to early September),
then set up each room to operate in one common mode. Since the units at both school
sites were setup for fixed outdoor air ventilation rates originally, we will duplicate that
situation with the same percentage of outdoor air for each room. This will allow for a full
characterization of the building thermal performance and any baseline differences

between rooms at each site.

Fall, 2001: Around the beginning of the new school year, the control strategy will be
changed to include one building on DCV and the other on a fixed ventilation rate. The
fixed ventilation rate will be for the maximum setting required for schoolroom occupancy
as determined by ASHRAE Standard 62. The control strategies will be reversed from

that during the initial cooling season monitoring time (May to June).

November 2001 — January 2002: Maintain the same control strategy for each building for

the beginning of the heating season.

January 2002 — March 2002: Reverse ventilation control strategies between the buildings

at each climate type. Do this during a site visit in late December 2001 or early January
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2002, or remotely if possible. Change back to the same settings for each room as with

the first cooling season phase of May-June, 2001.

RESTAURANTS:

March — May 2001: Monitor building performance for each of the restaurants using one
common ventilation control strategy. This will likely be the use of the existing
economizer control. Use this time to build baseline data for each building. During this

time, visit each site (March and/or May) and characterize the nominal usage patterns, etc.

June-July, 2001: For each climate type, set up one building with DCV mode and the other
with normal economizer mode. (Sacramento sites have Honeywell economizers

currently installed.)

August-Fall, 2001: At each climate type, reverse the ventilation control strategies, with

one building using DCV and the other set-up for fixed position dampers.

November 2001 — December/January 2002: Maintain the same control strategy for each

building for the beginning of the heating season.

December 2001 — February 2002: Reverse ventilation control strategies between the
buildings at each climate type. (Do this during a site visit in December 2001 or January
2002.) Change back to the same settings for each room as with the first cooling season

phase of June-July, 2001.

RETAIL STORES

The detailed plan for monitoring the retail stores will be finalized after completion of the

equipment installation. The plan will likely be as follows.

August-Fall, 2001: After the initial installation and checkout of the control equipment,
begin to monitor the buildings at the inland and coastal climate sites with one building in

DCV mode and the other using normal economizer control mode.
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November 2001 — December/January 2002: Maintain the same control strategy for each

building for the beginning of the heating season.

December 2001 — February 2002: Reverse ventilation control strategies between the

buildings at each climate type. (Do this during a site visit in December 2001 or January

2002.)

Spring 2002: Reverse the ventilation control strategies from the cooling season data

gathered during August and the fall of 2001.
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1. Introduction

All the thermodynamic states of a rooftop air conditioning unit (RTU) are functions of
external driving conditions and various faults, as is shown in figure 1.1. It is important for
fault detection and diagnosis (FDD) not to misinterpret vatiations in thermodynamic states
caused by changes in the driving conditions for faults. If measurements are classified
directly, the classification rules have to be complicated to consider the effect of external

driving conditions.

Faults
External Driving conditions: All thermodynamic states,
=T RT U o
Toa’TmaﬁWma El’ﬂond’Y-'evap’Tdis’Tsc’Tsa

Figure 1.1 Rooftop system

In order to simplify classification and improve overall FDD performance, model-based
FDD techniques usually use some type of model to predict expected values (normal
behavior) of measured performance indices using measured external driving conditions for
the equipment which is being monitored. Often, the difference between expected and
actual measurement values (residuals) will always be zero mean when there are no faults.
The probability distribution of residuals is a weak function of driving conditions and is
strongly dependent on faults. So if residuals are used to detect and diagnose faults, the

classifier may not need to consider driving conditions and is simplified considerably.

There are three general types of models: physical, black box and gray box. Physical models,
whose parameters and structures have some physical significance, are derived from
fundamental physical laws. An accurate physical model is capable of extrapolating
performance expectations well in case of limited training data. However, it is difficult and
expensive to develop an accurate physical model. Also, a complex physical model involves
large collections of nonlinear equations which are difficult to solve. In addition, physical

models are not accurate enough for a given system and require detailed data for training.
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Figure 1.2 Rooftop system with a normal performance model

Gray-box modeling approaches use lumped system parameters and some semi-empirical
expressions. Strictly speaking, there are no pure physical models in engineering; most of so-
called physical models are gray-box models. Although easier to build and faster to solve
than a physical model, a gray-box model may not be practical for commercial HVAC

FDD.

Black-box models, which can overcome the shortcomings of physical models, use
empirical input/output relationships that are fit to training data. There are many black-box
modeling approaches. Different approaches have different characteristics and interpolating
abilities. Generally speaking, in the mathematical point of view a black-box model can not
be expected to have good extrapolating ability. However, in the physical point of view,
most real systems normally would not change dramatically and have major linear
components, so black-box models can have some extrapolating abilities near the training
data range. What’s more, different approaches have different extrapolating abilities and
different parameters and structure of the same approach have different interpolating and
extrapolating abilities. This report reviews some relevant literature, and then documents
comparisons between several modeling approaches, and proposes an improved modeling

approach.



Table 1.1 Comparisons of Three Modeling Approaches

Characteristics Advantages Disadvantages
Physical [Derived from fundamental [Model parameters are  [Difficult to develop and solve
models physical laws; Large meaningful; the model;
collections of nonlinear . . .
Extrapolates well in case [Need more detailed physical
cquations of limited training data  [description and data
Black-  [Input/output relationship [Easy to develop and [Poor extrapolation;
box to fit the train data by realize; Accurate fits Model parameters have no
models optimizing performance  |within the training data meaning
index range; Computational
simplicity
Gray-box|Combination of physical [Easier to develop than  [A little difficult and expensive
models [and black box model; physical model and has  |to develop
Use semi-empirical good interpolating and
expressions extrapolating
performance




2. Background work

There are a lot of literature on modeling of vapor compression systems. The following

sections contain a review some models that were developed for FDD.
2.1 Physical modeling and gray-box modeling

Rossi and Braun (1995) developed a steady-state physical model, known as ACMODEL,
which simulates the operation of vapor compression cycles. The model solves the mass,
momentum, and energy balances for each component and performs a charge inventory for
the entire system. This model was used to aid in the original development and evaluation
of an FDD method. ACMODEL is a modular toolkit. Individual components are
modeled as subroutines (e.g., compressor, condenser, evaporator, expansion device) with
specified inputs and outputs. A robust numerical equation solver capable of converging to
the operating state with a tight tolerance is included. A tuning program adjusts less well
known model parameters based on simple measurements at an operating point to provide

for more accurate perfomance predictions at different operating conditions.

The compressor of the ACMODEL is semi-empirical and uses empirical curve fits to
manufacturer’s performance data for compressor volumetric efficiency (to calculate mass
flow rate) and power. The outlet enthalpy is calculated assuming a polytropic compression

process with a constant polytropic efficiency.

The condenser and evaporator models use physically based tube-by-tube analyses where
each tube is broken into small segments. Mass, momentum, and energy balance are applied
to each tube segment, and the heat transfer, pressure drop, and refrigerant mass are
calculated for the segment. However, there are some differences between the condenser
and evaporator models. The condenser model considers only heat transfer whereas the
evaporator model considers both heat transfer and mass transfer. The condenser and
evaporator coil models are built from functions which are provided for a finned tube,
return bend and manifold. Geometric information about the tubes and fins are entered in

an input file.

The throttling valve is modeled as a fixed orifice expansion device which is assumed to

have two-phase Fanno flow (one-dimensional, adiabatic, compressible, with friction).

The equations for each of these components as well as a charge inventory must be solved

simultaneously to find the steady-state operating point for the air conditioning unit. The



solution procedure involves the non-linear solution of three residual equations in the cycle.
The effect of all five of the operating faults which are being studied can be simulated with

ACMODEL.

Except for Rossi and Braun, the problem of developing a physical model for a rooftop air

conditioning unit for FDD purposes has not been specifically addressed in the literature.

Stylianou and Nikanpour (1996) considered two different models for a reciprocating chiller
to use with a model-based FDD technique. For the problem of fault detection, a gray-box
model was used. This model, developed from first principles and first introduced by
Gordon and Ng (1994), correlated the equipment COP with the condenser and evaporator
inlet water temperatures. This performance index is used to decide when the impact of a
fault is significant enough to warrant repair. The other model is a black-box model which

will be discussed in the next section.

2.2 Black-box modeling

Since black-box models are easy to develop, accurately fit training data, and are
computationally simple, they are popular for engineering use. Several kinds of black-box

modeling approaches will be discussed here.

2.2.1 Polynomials

Linear regression polynomials are the easiest and most frequently used black-box
models. Grimmelius et al. (1995) used steady-state linear models with three input
variables to predict a number of output states of a vapor compression chiller. The
predicted variables included the temperatures and pressures at the inlet and outlet of
each component in the refrigeration cycle, suction superheat, liquid subcooling, oil
pressure, temperature, and level, the pressure ratio across the compressor, temperature
changes of the water across the evaporator and condenser, filter pressure drop, and
compressor power. The three input variables were the chiller water inlet temperature,
the cooling water temperature into the condenser, and the number of compressor

cylinders in operation. The model form which was used is

Vi = :Bo,i + A,iTchwi + lgz,iTcwi + ﬂ},izl + ﬂél,iZZ + ﬂs,iZ3 + :Bs,i log(7,,.:)
+ ﬂ7,i(Tchwi )71 + /Bx,i log(7.,,)+ ﬂf),i(Tcwi )71



where the i output variable y,is the calculated value, B ;- 43, are the regression

coefficients, T

chwi

is the chiller water inlet temperature, 7

cwi

is the cooling water

temperature into the condenser, and Z are variables indicating the number of cylinders
in operation. Regression coefficients were determined using a multivariate least-
squares method applied to 8000 operating data points which were assumed to be fault-
free. The R” statistic of the regression indicated that the fit to the data was quite

accurate for almost all of the variables which were used in the FDD routine.

To create residuals to use in fault diagnosis, a black box model was used by Stylianou
and Nikanpour (1996) to predict values for internal temperatures and pressures. The
model uses two input variables, the water inlet temperature into the condenser and

evaporator, and a simple linear equation for all of the output variables as given by
Vi = 180,1' + IBI,iTchwi + ﬂ2,iTcwi

where the i output y;is the calculated value, £ -/, are the regression coefficients,

T

"mi 18 the chiller water inlet temperature, and 7, .is the cooling water temperature
into the condenser. The parameters of the model were determined using a
multivariate least-squares analysis. The results showed an excellent fit to the
experimental data, although the data only covered a relatively small range of
evaporator inlet water temperatures (50°-59°F) and condenser inlet water temperatures

(72°-93° F).

In addition to developing the FDD method considered in his thesis, Rossi (1995) also
suggested some models for rooftop air conditioning units for use with his method.
The performance of a rooftop air conditioner with fixed flow rates is a function of the
condenser and evaporator inlet air temperatures and the moisture content of the
evaporator inlet air. The moisture content can be represented using a relative
humidity, dew point temperature, or wet bulb temperature. There are two modes of
operation for a typical cooling coil, wet and dry. The coil is defined as wet when
water is being removed from the air stream in addition to heat. When the coil is wet,
the energy transfer to the coil is driven primarily by the difference between the
temperature of the evaporating refrigerant and the wet bulb temperature of the air,
independent of dry bulb temperature alone. When the coil is dry, the heat transfer is
driven by the difference between the coil and the dry bulb temperature of the air,



independent of the moisture content in the air. Thus, if the operation between these
two regimes can be separated, the problem of developing a model for the rooftop unit
can be expressed as a function of two independent variables instead of three. To
separate wet coil operation from dry coil operation, Rossi (1995) suggested using the

following form for the models

f( amb > ra’va):fwet(pot evap)*gwet( amb’wa)
+(1_fwet(pot evap))*gdrv( amb > ra)

where f(T,,.T,,T,) is any state in the vapor compression cycle dependent on all

three inputs, T, is the dew point temperature of the evaporator inlet air,
STy = T,,,,) 1s @ function which returns a value of 0 when the coil is dry and 1

T ) are models for individual

when the coil is wet, and g,,(7,,.T,,) and g, (T,,,.T,
properties for the wet and dry operating regimes. Using data generated by the

simulation model, Rossi found that the function 1, (7, —

wet

) can be approximated

evap

as a step function with a threshold value of 2.7° C. Thus, when T, is greater than

by more than 2.7° C, the coil is considered to be wet, and when this difference is

evap

less than 2.7° C the coil is considered to be dry.

Using this form, Rossi (1995) developed models for the total capacity of the rooftop
unit as a function of the driving conditions. In the dry coil region, he found that the
capacity could be approximated by a linear function of the two independent variables.
In the wet region, a much more complex non-linear function was developed to fit the
shape of the data which appeared to saturate at high wet bulb temperatures. Although
Rossi did suggest that these model forms could be used to model the temperatures

required by his FDD method, he did not attempt to fit any of the temperatures.

Breuker and Braun (1998) did extensive research on polynomial modeling for a
rooftop unit with a fixed orifice expansion device. They examined the form of the
experimental data over a range of driving conditions and compared different order
polynomial models. The polynomial orders necessary to produce a satisfactory fit to
both simulation and experimental data are given in table 2.1 shows. Three-inputs and
two-inputs model were compared also. It was concluded that a polynomial model with
three independent variables (three-inputs) provides the most accurate predictions of

the test data, given a large set of training data.
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Table 2.1 Best model orders for 3D polynomial fits for experimental data

Variable Best Model to Use RMS Error (F) Maximum Error (F)
T 1% order 0.49 0.99
T, 3" order with cross terms 1.39 3.03
T, 3" order with cross terms 1.00 3.24
T 1" order 0.31 0.61
T, 2™ order with cross terms 0.46 1.39
AT, 1* order 0.18 0.48
AT, 2" order with cross terms 0.23 0.56

2.2.2 General Regression Neural Network

Donald [1991] described a memory-based network, general regression neural network
(GRNN), which is a one-pass learning algorithm with a highly parallel structure. This
approach eliminates the necessity of assuming a specific functional form of the model.
Rather, it allows the appropriate form to be expressed as a probability density function
(pdf) which is empirically determined from the observed data using nonparametric
estimators. Thus, this approach is not limited to any particular form and requires no prior
knowledge of the appropriate form. Secondly, the resulting regression equation can be
implemented in a parallel, neural-network-like structure. Since the parameters of the
structure are determined directly from examples rather than iteratively, the structure
“learns” and can begin to generalize immediately. Considering that the idea and algorithm
of GRNN is adopted in our FDD modeling, the derivation of GRNN is repeated and in
order to better understand the original derivation some omitted intermediate derivation is

added.

Assume that f(X,y) represents the known joint continuous probability density function

of a vector random variable, X', and a scalar random variable, y . The conditional mean of
v given X (also called the regression of y on X') is given by

[ wrx, ydy
E[y| X]==2 M

[ rx.pay

When the density f(X,y) is not known, it should usually be estimated from a sample of
observations of X and y. Here the consistent estimators proposed by Parzen (1962) are

adopted. These estimators are a good choice for estimating the probability density

11



function, f(X,y), if it can be assumed that the undetlying density is continuous and that
the first partial derivatives of the function evaluated at any X are small. The probability
estimator ]A( (X,y) is based upon sample values X' and )’ of the random variables
X and y, where n is the number of sample observations, p is the dimension of the
vector variable X and o is sample probability width:

. 1 1L X -X)Y (X -X)+(-y)
f(X’y):(27T)(p+l)/2o_(p+l);;exp[_ 202 S ] @)

A physical interpretation of the probability estimate f (X,y) is that it assigns sample
probability of width ¢ for each sample X' and y', and the probability estimate is the
sum of those sample probabilities. Substituting the joint probability estimate f (X,y) in

equation (2) into the conditional mean, equation (1), gives the desired conditional mean of

y given X . In particular, combining equations (1) and (2) and interchanging the order of

integration and summation yields the desired conditional mean, designated y(X):

S~ XA AN g 07 g
50 = 2 e o
S enp- XA (XX )]j_mexp[——(y 2

Perform the following integration:

[ yexpr- 02 g,
—0 20°
iN2
= [ (y=y"expl- (yzgy) Jd(y—y")+[" ¥ exp[- %]dy
r—»")’

[ e YD) =D y)
=0’ | expl—-— 5l

1+ ex d

V[ expl- Sy
iN2 iN2

=52 dexol— P Y ) 1 i ek YY)

[, dexpl=2 21y [ expl 2 1y
(y—y')
202
(y—y')’
2 2

=0+y' f; exp[— ldy
)

=y exp[—=—51dy
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Define the scalar function D},
D’ =(X-X)'(X-X). 6)

Substituting equtions (4) and (5) into equation (3), yields the following:

2

S yiexpl- X XV X=X $ - Py

$(x) = 20 - = 2d ©
n X - XHVY(Xx-X' T on 2
Sewpl- ) T Sen- )

Because the particular estimator, equation (3), is readily decomposed into X and y

factors, the integrations were accomplished analytically. The resulting regression, equation
(6), which involves summations over the observations, is directly applicable to problems
involving numerical data. Parzen and Cacoullos (1966) have shown that density estimators
of the form of equation (2) used in estimating equation (1) by equation (6) are consistent
estimators (asymptotically converging to the underlying probability density function

f(X,p) at all points (X,y) at which the density function is continuous. Provided that

o = o(n) is chosen as a decreasing function of n such that

limo(n)=0

n—>00

and

limno”(n) = 7

n—0

The estimate J(X') can be visualized as a weighted average of all of the observed values,

¥', where each observed value is weighted exponentially according to its BEuclidean

distance from X . When the smoothing parameter ¢ is made large, the estimated density

is forced to be smooth and in the limit becomes a multivariate Gaussian with

covariance °1 . On the other hand, a smaller value of ¢ allows the estimated density to
assume non-Gaussian shapes, but with the hazard that wild points may have too great an

effect on the estimate. As o becomes very large, J(X) assumes the value of the sample
mean of the 3’ and as & goes to 0, P(X) assumes the value of the y' associate with the

observation closest to X . For intermediate values of o , all values of y' are taken into

account, but those corresponding to points closer to X are given heavier weight.
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Output
Units

(layer)

Figure 2.1 Neural-Network Implementation of GRNN

The above GRNN algorithm can be implemented in an artificial neural-network structure
(shown as figure 2.1), which usually defined as a network composed of a large number of
simple processors (neurons) that are massively interconnected, operate in parallel and learn
from experience (training data). The input units are merely distribution units, which
provide all of the (scaled) measurement variables X to all of the neurons on the second
layer, the pattern units. The pattern unit is dedicated to on exemplar or one cluster center.
The summation units perform a dot product between a weight vector and a vector
composed of the signals from the pattern units. The output unit merely performs the

operation of division to get the desired estimate of P(X).

When estimation of a vector Y is desired, each component is estimated using one extra
summation unit, which uses as its multipliers sums of samples of the component of ¥’
associated with each cluster center. There may be many pattern units (one for each
exemplar or cluster center); however, the addition of one element in the output vector

requires only one summation neuron and one output neuron.
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2.2.3 Back-propagation neural network

Neural networks are composed of simple elements operating in parallel. These elements
are inspired by biological nervous systems. As in nature, the network function is
determined largely by the connections between elements. A neural network can be trained
to perform a particular function by adjusting the values of the connections between
elements. Commonly neural networks are adjusted, or trained, so that a particular input

leads to a specific target output.

Back-propagation (BP) neural networks are used most often and were created by
generalizing the Widrow-Hoff learning rule to multiple-layer networks and nonlinear
differentiable transfer functions. Input vectors and the corresponding output vectors are
used to train a network until it can approximate a function or associate input vectors with
specific output vectors. Networks with biases, a sigmoid layer, and a linear output layer are
capable of approximating any function with a finite number of discontinuities. Standard
backpropagation is a gradient descent algorithm, as is the Widrow-Hoff learning rule. The
term backpropagation refers to the manner in which the gradient is computed for
nonlinear multilayer networks. Properly trained backpropagation networks tend to give
reasonable answers when presented with inputs that they have never seen. Typically, a new
input will lead to an output similar to the correct output for input vectors used in training
that are similar to the new input being presented. This generalization property makes it

possible to train a network on a representative set of input/output pairs.

The oldest algorithm is a gradient descent algorithm, for which the weights and biases are
moved in the direction of the negative gradient of the performance function. However, this
algorithm is often too slow for practical problems. So many improved algorithms such as
variable learning rate, resilient backpropagation, conjugate gradient and reduced memory
Levenberg-marquardt, have been proposed to increase training speed and reduce the
memory requirements. Another problem that occurs during neural network training is
called overfitting. The error on the training set is driven to a very small value, but when
new data is presented to the network the error is large. The network has memorized the

training examples, but it has not learned to generalize to new situations.

Since BP artificial neural networks can be used to build classifiers that directly classify input

vectors, they are often used to build both the model and classifier as a whole for FDD use.

In a paper by Li, X., H. Hvaezi-Nejad (1996), an artificial neural network (ANN) prototype

for fault detection and diagnosis (FDD) in complex heating systems was presented. The
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prototype was developed by using the simulation data of a reference heating system. The
prototype was then applied to four heating systems not used during the training phase. Six
categories of fault modes and a reference normal mode were modeled. The paper
demonstrated the feasibility of using ANNs for detecting and diagnosing faults in heating
systems, provided that training data are available which are representative of the behavior
of the system with and without faults. Although the ANN prototype was trained using only
one simulated heating system, it showed good capacity for generalization. Two proposed
structures of network were trained, tested and compared. In their study, a single artificial
neural network performed better than multiple artificial neural networks. This is probably
because a structure composed of a single network learns global knowledge easier than one
composed of two multiple networks. So far, this FDD prototype has been studied only
using simulation data. However, this paper gave no information about the severity of the

faults detected.

Lee, House and Shin (1997) described the architecture for a two-stage artificial neural
network for fault diagnosis in a simulated air handling unit (AHU), and the use of
regression equations for sensor recovery of failed temperature sensors. To simply the
ANN, the AHU was divided into several subsystems. The stage-one ANN was trained to
classify the subsystems in which faults occurt, and the stage-two ANN was trained to
diagnose the cause of faults at the subsystem level. The trained ANNs were applied to
simulation data and shown to be able to identify eleven faults. A regression equation was
used to recover the estimate for the supply air temperature when the supply air
temperature sensor yielded erroneous measurements. The estimates of the sensor

measurement could be used for control purposes during a fault.

2.2.4 Radial basis function

Another black-box modeling technique uses radial basis functions (RBF) that work directly

from data as described by Mees [1992]. The main idea is as follows:

Suppose that by experiment, values y,, ..., »,, of yhave been found at x,, ..., x,,. The

radial basis approximation f(x) fitting the expetimental data is defined by

(=2 Ad(x=x,) ®
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where the radial basis function ¢ can be almost any scalar function of one vatiable we care

to choose, and the A, ’s are computed so that all the known values fit exactly. That is,

¥ =2 A% =%, ) 0

Writing the matrix @ with elements
Dy =(|x; —x; ) (10)
we can rewrite equation (9) as m linear equations in m unknowns:
A=y 1D

where y and A are the vectors with elements y, and A, i=1,---,m . Solving equation
(11), therefore, determines f completely.

Computationally, the significant part of the problem is that of solving the linear equations
(11) for A . The size of the matrix @ is the number m of data points and so the
computational effort, which is of order m’, may be large. Fortunately, this calculation is
only performed once for a particular set of data points and ¢. The work involved to

interpolate for any given point is then considerably less, of order m .

As well as the difficulty of long computation time, there is a risk that as m grows, @ will
become ill-conditioned. Fortunately, Dyn and Levin (1983) found some well-conditioned

@ results form choices of ¢.
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3. Comparison of black-box modeling approaches using

laboratory data

3.1 Laboratory experimental data

Breuker (1997) gathered data under controlled conditions in a laboratory on a test unit
at a number of controlled operating conditions and used the data to test the ability of
several model types to produce accurate estimates of unit performance. This test unit
is a three ton packaged rooftop unit (Carrier Model 48DJE004610) which has a
constant speed and hermetically-sealed reciprocating compressor (Copeland Model
CRH3-0275-TFD) and uses fixed-orifice type expansion devices for refrigerant flow
control. The grid of indoor conditions used in the testing is shown in figure 3.1. The
larger set of data, labeled "Training Data" in the figure, was gathered at indoor dry
bulb temperatures of 70, 73, 76, 79, and 82 F, indoor wet bulb temperatures of 55, 58,
61, 64, and 67 F, and ambient temperatures (not shown in figure) of 60, 70, 80, 90,
and 100 F. The smaller set of data, or "Test Data", was gathered at indoor dry bulb
temperatures of 71.5, 74.5, 77.5, and 80.5 F, indoor wet bulb temperatures of 56.5,
59.5, 62.5, and 65.5 F, and ambient temperatures of 65, 75, 85, and 95 F. As the
figure shows, however, not all dry bulb conditions were simulated at all wet bulb
conditions. A total of 40 distinct combinations were simulated in the "Test Data" and
94 combinations were simulated in the "Training Data" set. The conditions were
selected because they completely cover the normal comfort region defined by
ASHRAE (1993). The reason for gathering the data in two distinct sets was to allow
for training and testing on separate sets of data. Training on the large set and testing
on the small set of data tests the ability of the model to interpolate accurately.
Training on the small set will test the ability of the model to extrapolate beyond the

training data.
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Indoor Conditions for Testing
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Figure 3.1 Indoor conditions simulated for training and testing steady-state models

The training data were gathered by running the rooftop unit with no faults. Data was
gathered over the course of three weeks of testing. To ensure that there were no faults
developing in the test unit over this time period and to test the experimental noise
which is present in the operation of the test unit, a test condition at Toy, = 85 F, Ty =
76 F, @, = 42% was retested every few days. The results of this repeatability test for
all of the measurements used by the FDD technique are shown in table 3.1. The most
noisy measurements, as expected, are the suction superheat and hot gas temperatures.
This level of experimental noise is already considerably above the measurement error
levels which were used in the steady-state analysis of the FDD technique performed
by Rossi. Figure 2.2 shows the level of suction superheat during the repeatability test.
The fact that the graph is not increasing during the test indicates that the level of
charge in the system is not decreasing, since suction superheat is particularly

dependent on the charge level in the system. One cannot expect to develop a model
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which is more accurate than the experimental noise of the measurements which are

used in learning the model.

Table 3.1 Repeatability analysis during steady-state model testing

Property | T, Ty, Ty, Teona T, AT, AT,
of Data

(deg. F)

Mean 43.76 8.42 195.11 108.69 7.05 11.72 19.14
Std. Dev. | 0.39 1.73 1.25 0.40 0.25 0.09 0.17
Spread 1.21 4.80 4.04 1.28 0.60 0.26 0.64

Suction Superheat vs. Time During Repeatability Test

Suction Superheat (F)
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Figure 3.2 Suction superheat during repeatability test
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3.2 Comparisons

Four black-box modeling approaches: polynomials, GRNN, RBF and BP neural networks

were investigated using the laboratory data. Seven characteristic parameters (evaporating

temperature 1, condensing temperature 7,

evap » compressor discharge temperature

ond >

T dis » suction line superheat Tsh , liquid line subcooling TSC , condenser air temperature

difference AT, evaporator air temperature difference AT,,) for FDD wete modeled.

ca’
Since the gathered data are very limited (94 points for large set data and 40 points for small
set data), when testing interpolation, the large data set were used to train models and both

the small and large data set were used to test models. When testing extraplation, the core of

the total data (7, from 73 to 79 F, T, , from 70 to 90 F, T’ , from 58 to 64 F) were used

a

to train models and the remaining data were used to test models.

To get a visual feeling of the modeling performance, figure 3.3 and figure 3.4 show the
training performance and testing performance for evaporating temperature. Table 3.2 and
figure 3.5 show the RMS error for the polynomial models. Polynomial models have good
interpolating ability when the order is high enough (e.g. third order) and the interpolating
performance increases as the order increases. However, low-order polynomial models have
good extrapolating performance, while the extrapolating performance will be very poor
when the polynomial order is too high (e.g. the third order). So there exists a conflict

between interpolating and extrapolating performance.

Table 3.2 and figure 3.6 show that the GRNN models have very good interpolating ability
but poor extrapolating performance. The spread has a significant influence on the
interpolating performance but little influence on extrapolating performance. The smaller
the spread, the better the interpolating performance. Another advantage of GRNN is that
training is very fast. The disadvantage of GRNN is that large memory is required to record

the nodes when the number of nodes is large.

From table 3.3, it can be seen that the BP neural network has very good interpolating
ability when the number of neurons is appropriate, but extrapolating performance is poor.
Also the performance is a little random, because the initial condition is random. The

weakness of the BP neural network is that it takes a little long time to train.
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Similar to GRNN, RBF has very good interpolating performance but poor extrapolating

performance, which is shown in table 3.2. Table 3.4 summarizes the comparison among

polynomial , GRNN, BP and RBF modeling approaches.
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Figure 3.3 Training performance of third order polynomials for evaporating temperature
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Figure 3.4 Testing interpolating performance of third-order polynomials for evaporating

temperature
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Table 3.2 RMS error (Polynomial, GRNN and RBF fitting for laboratory data)

RMS error (F) Polynomial Order GRNN Spread
1 2 3 01 |02 |03 |RBF
Interpolation | tralning | a0, | 0.4006 | 0.3044 0 | 0.1148 | 0.5034 0
T tCSUNE | 07275 | 0.434 | 04301 | 0.2188 | 0.2393 | 0.4827 | 0.4717
evap - e
Bxtrapolation | training |  eges | 0303 | 0.2734 0 | 0.0003 | 0.0541 0
Interpolation | training 0521 | 0336 | 0.3252 0| 0269 | 1.2985 0
T, teSUNg | 04877 | 0.3506 | 0.3449 | 02033 | 0.3047 | 1.1282 | 0.4366
CON : 11
Fxtrapolation | traling | 4 5537 | 03136 | 0.2673 0 | 0.0006 | 0.1316 0
Interpolation | trAINING | ) 4o0s | 4 3056 | 4355 0| 03035 | 1.3126 0
T, tCSUNE | 52856 | 1.3583 | 1.3092 | 0.5659 | 0.6217 | 1.2627 | 0.8922
; . —
Extrapolation | traling | , 159 | (9145 | 0.900 0 | 0.0005 | 0.113 0
Interpolation | tralNINg |  aeq | 03026 | 0.384 0 | 00872 | 0.386 0
T tCSUNE | 08237 | 04223 | 04238 | 0.2205 | 0.2409 | 0.4 | 0.4442
5¢ Extrapolation training
Interpolation | traININgG | , 4065 | 47555 | 17013 0 | 0.3005 | 1.1706 0
T, teSUNg | 23956 | 1.7524 | 1.6646 | 0.7254 | 0.7699 | 1.2635 | 1.1423
s Extrapolation | training
Interpolation | EralNINgG | 204 | 0.1402 | 0.1353 0 | 00292 | 0.1165 0
AT teSUNE | 02113 | 0.1525 | 01532 | 0.0828 | 0.0865 | 0.1306 | 0.1532
ca . 1411
Extrapolation | traling | 546 | 1055 | 0.095 0 | 0.0001 | 0.0119 0
Interpolation | tralNINgG |  g44g | 02197 | 0.2172 0| 0.1193 | 0.5324 0
AT teSUNE | 0.8066 | 0.2269 | 0.2278 | 01375 | 01711 | 0.4831 | 0.1666
ea . 111
Bxtrapolation | training | 4 6325 | ¢.4067 | 0.1022 0 | 0.0002 | 0.0413 0

testing
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Table 3.3 RMS(BP fitting for laboratory data)

Number of Neurons(First trial)

Number of Neurons (Second trial)

RMS error (F)
6 12 18 6 12 18
Interpolation | UaINING | 3514 | 02068 | 02283 | 02387 0227 | 02043
T (eSUNg | 4707 | 0495 | 04956 | 04918 | 04933 | 05218
evap . i
Bxtrapolation | tralning | o 1o | 6149 | 12108
Interpolation | taINING | 3305 | 02643 | 02544 | 03537 | 02668 | 02621
T, CSUNS | 03893 | 04555 | 04591 | 03483 | 04515 | 04549
COn . 11
Extrapolation | training 0.2336 0.2285 0.2289
Interpolation | tralnINg | 6005 | 05502 | 08923 | 0.6043 | 06319 | 07424
T, teSUNS | 09934 | 09984 | 10172 | 09935 0934 | 09473
IAY . 11
Extrapolation | taltINg | 4763 | 07584 | 04777 0478 | 05168 | 19844
Interpolation | UAlNING | 4545 | 0305 | 0325 | 03543 | 03543 |  0.3542
T TCSUNS | 04362 | 04363 | 04363 | 04646 | 04644 |  0.4643
sc : 11
Bxtrapolation | training | 1655 | 041902 | 02503 | 01992 | o0.%82 |  0.1992
Interpolation | taINING | o975 | 10046 | 10024 | 09984 | 07823 | 10118
T, (CSUNS | 40464 | 1.0519 | 1.0422 1045 | 10605 |  1.0531
. : —
Extrapolation | WAINING | 7033 | 10702 | 07257 | 07248 | 08625 | 07276
Interpolation | training |, 17, 007 | 00768 |  0.0829 0.074 | 00716
AT teSUNS | 01426 | 01408 | 01377 | 01412 | 01406 |  0.1459
cd Extrapolation | training
Interpolation | WG | 1413 | 041389 | 0.1372 0441 | 041375 |  0.1424
AT testng | o1ge7 | 0.1855 | 0.1824 |  0.1905 |  0.1831 0.1974
ed Extrapolation | training

testing
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Table 3.4 Contrast of Black-box modeling approaches

Characteristics [Advantages Disadvantages
Polynomials [Assume polynomial  [Easy to build Conflict between

functional form of the I ow-order model has mterpolatl'on and

model extrapolation

reasonable extrapolating
performance

GRNN Memory-based Very fast training Need to cluster the data to
network . . reduce nodes and memo
tw Very good interpolating y
. when data are large
One-pass learning performance
aloorithm . Poor extrapolatin
& No conflict between f xtrap )
A ) ) erformance
Parallel structure interpolation and extrapolation P
Free from the Parallel ANN-like structure,
necessity of assuming [not iterative, able to operate in
a specific functional  [parallel
form of the model; . .
> [Takes noise and disturbances
into account
Easy to be adaptive
Every additional output needs
only two additional units
Back- Weights and biases | Very good interpolating Need long time to train
Propagation [are moved in the erformance; .
pag o P ’ Poor extrapolating
direction of
. performance
minimizing the
network error
Radial basis [Use radial basis Very good interpolating Poor extrapolating
interpolationffunction as basis performance performance;
function to
interpolate

Strictly speaking, most real systems are nonlinear and can be expanded by Taylor series.

Wide use of the first order approximation of Taylor series in engineering shows that most

real systems have a low-order dominant component, so low-order polynomials which

capture the system performance will have reasonable extrapolating performance far outside

their training data range while high-order polynomials will extrapolate very pootly.

However, the interpolating performance is normally proportional to the polynomial order.
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So the interpolating performance of polynomials conflicts with their extrapolating

performance.

Other black box modeling approaches such as GRNN, RBF and BP ANN can have very
good interpolating performance and but can not be expected to extrapolate very well far

outside the training data range.

3.3 Polynomial plus GRNN model

Low-order polynomials have good extrapolating ability but poor interpolating ability,
whereas, GRNN, BP ANN and RBF have very good interpolating ability, so the
combination of polynomials with one of GRNN, BP or RBF modeling approaches could
have both good interpolating ability and good extrapolating ability. The result can be seen
from the table 3.5.

GRNN was selected in ombination with polynomials since GRNN is easy to adapt. Nodes

can be added to or deleted from the network to improve the accuracy.

First, a low-order polynomial model is regressed with the training data and then the
residuals between the polynomial output and the training data are fit with a GRNN as
shown in figure 3.7. After training, the model can be used to generalize as shown in figure

3.8.

The order of the low-order polynomial model depends on the characteristic of the system
modeled. Different systems and different variables of the same system have a different
“dominant order”. Usually the “dominant order” is not greater than two. Before modeling,
the “dominant order” of the system is not known so the “dominant order” is determined

by evaluating the extrapolating performance. Table 3.5 shows that first-order for

Tevap ,Tcond ,T dis and Tsh and second-order for Tsc, ATca and AT, ea work well and are

best for polynomial models. The purpose of the low-order polynomial model is to
optimize the extrapolating performance, whereas the GRNN compensates and improves
the interpolating performance, which is sacrificed by the choice of a low-order polynomial
model. The GRNN may improve also the extrapolating performance somewhat (figure
3.9). The interpolating and extrapolating performance of the various approaches are

summatized in table 3.6.

27



Polynomial plus GRNN Training

- Residuals
Desired GRNN
_>
output v + model  + Output
Low-order 4 +
Polynomial
A
Driving
conditions
Figure 3.7 Polynomial plus GRNN training blcck diagrams
Polynomial plus GRNN Generalization
Low-order
Measurements Polynomial + Output
of Driving  —
conditions .. GRNN +
model

Figure 3.8 Polynomial plus GRNN generalization block diagrams
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Table 3.5 RMS(Polynomial plus GRNN, BP and RBF fitting for laboratory data)

Al ial+ ial+
S etror () Polynomial+GRNN Polynomial+BP | Polynomial+RBF
1 2 3 1 2 1 2
Interpolation | training 0 0 0| 08002 | 0.6931 0 0
T esung | oo1gs | 02233 | 02242 | 05152 | 04719 | 04858 | 04826
evap . s
Extrapolation | training 0 0 0| 06895 0.579 0 0
Interpolation | training 0 0 0 0.521 | 0.4269 0 0
T, esung | 55033 | 02059 | 02089 | 03974 | 03734 | 0.4241 0.4205
con - b
Extrapolation | training 0 0 0| 05237 | 04216 0 0
Interpolation | training 0 0 0| 23693 | 2.2698 0 0
T, tesung | oseso | 0582 | 05706 | 20733 | 20486 | 0.9199 0.941
; : —
Extrapolation | training 0 0 0| 20129 1.919 0 0
Interpolation | training 0 0 0| 08489 | 06177 0 0
T eSUg | 02005 | 02404 | 02447 | 07606 | 05003 | 04427 | 04519
s¢ Extrapolation | training 0
Interpolation | training 0 0 0| 24055 | 22945 0 0
T, eSUNg | o 7o54 | 07464 | 07331 | 23721 | 23807 | 11347 | 11524
s Extrapolation | training 0
Interpolation | training 0 0 0| 02004 o0.1846 0 0
AT tesung | 90828 | 00823 | 0.0858 0.188 | 0.1647 |  0.1561 0.1574
ca . L
Extrapolation | training 0 0 0 0.1516 0.1463 0 0
Interpolation | training 0 0 0| 08448 | 0.6804 0 0
AT esung | o375 | 01244 | 0427 | orore | 05133 | 04925 | 02049
ea . 11
Extrapolation | training 0 0 0| 06322 05634 0 0
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Figure 3.9 Polynomial plus GRNN modeling performance (Tevap Model)

Table 3.6 interpolating and extrapolating performance

Performance fitting interpolation extrapolation
Method
+++ +++ +++
Polynomials ++++ ++++ ++
+++++ +++++ +
BP +++++ +++++ ++
BP+Polynomials +++++ +++++ +++(+)
GRNN +++++ +++++ ++
GRNN+Polynomials | +++++ +++++ +++(+)
BRF +++++ +4++++ ++
BRF+Polynomials +++++ +++++ +4++(+)
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4. Modeling field site data

Polynomial plus GRNN models had good performance when tested with laboratory data.
However, some factors, which will affect the actual field operations of rooftop units, were
not considered in the experimental tests. Examples include unmeasured ambient weather
conditions, such as solar radiation, rain, and strong wind on the condenser. Also the
damper position changes the air flow rate. The laboratory experimental data was collected
with a constant air flow rate. Since the mixing chamber is small, outdoor air and return air
are not mixed well and different damper positions also have some impact on mixing. So it

is necessary to investigate the impact on the model of these different factors.

4.1 Impact of unmeasured weather variables

4.1.1 Solar radiation impact on the system

Solar radiation has an impact on the whole system, which will absorb different amounts of
radiation when the intensity of sunshine is varied. The most significant and direct impact is
on the condenser. Fortunately, the solar radiation impact on the system is also reflected in
the temperature sensor readings exposed to the solar radiation. However, whether the solar
radiation impact on the whole system is properly reflected in the sensor’s readings needs to
be investigated. Solar radiation impact on the whole system will be analyzed inversely by

modeling. It is necessary to investigate the impact on the sensor’s reading before the data

are used to build 2 model.

There are two temperature sensors, condenser inlet and outlet air temperature sensors, that
are exposed to solar radiation. From the data gathered during August 13 to August 17 at
Purdue field site (figure 4.1) when the solar radiation was not very intense, it is apparent
that the solar radiation impact on the condenser inlet air temperature sensor is as much as

15F.

From figure 4.2, it is clear that the solar radiation impact on the condenser outlet air
temperature sensor readings depends on whether the condenser fan is on or off. When the
condenser fan is off, the solar radiation impact is up to 15 F. However, when the
condenser fan is on, the solar radiation impact on the condenser outlet air temperature

sensor readings is less than 1 F. Fortunately, the data when the condenser fan is off is not
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used to build the steady-state model and the solar radiation impact on the condenser outlet

air temperature sensor readings can been ignored.

110
—— 12:Condenser inlet air temperature
—— 21:Condenser inlet air temperature (shielded)
100
T 90
()
S
2
s 80
S
[
Q
€ 70
-
60
50

13:00 23:06 9:06 19:06 5:06 15:06 1:10 11:10 21:10 7:10
Time (From August 13 to 17)

Figure 4.1 Solar radiation impact on condenser inlet air temperature readings (Purdue field

site)
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Figure 4.2 Solar radiation impact on condenser outlet air temperature readings (Purdue

field site)

The process of solar-heat gain for the sensor is illustrated schematically in Figure 4.3. Since
the sensor surface is opaque, transmittance 7 is zero and a portion of the solar energy is
reflected and the remainder absorbed. Since the sensot’s thermal capacity is small it reaches

steady-state very quickly.

According to steady-state energy balance on the sensor,
Aal, = Ah,(t,—t,)

where, A =sensor surface area, o =absorptance, /, =irradiation on sensor exterior surface,

t, =ambient air temperature, f, =sensor surface temperature (sensor’s reading), and

h, =heat transfer coefficient between sensor and ambient ait.
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a, p,T

Figure 4.3 Solar radiation impact on the temperature sensor reading

Rearrange the above equation to get

al . . .
Note that h—’ + 1, is also the sol-air temperature for any surface having the same « , 1, ,h

>Tt> o

o

and 7,. The sol-air temperature of HVAC equipment surfaces is an equivalent outside air

temperature increased by an amount to account for the solar radiation when the heat
transfer is calculated between outside air with the opaque HVAC equipment surfaces.
However, only the form is the same, since different surfaces have different absorptances
and incident radiation. HVAC equipment have surface absorptances that are different from
the absorptance of temperature sensor and also different components of the HVAC
equipment have different absorptances. The condenser can be considered a black body
with an absorptance of 1. What’s more, in deriving the above so called sol-air temperature,
thermal balance is assumed and thermal storage is neglected, which is well satisfied by the
temperature sensor but not by the HVAC equipment whose thermal storage is more
significant. So the unshielded temperature sensor’s reading is not exactly the sol-air

temperature of the HVAC equipment.
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For the condenser outlet air temperature sensor, the air flow rate is very high when the

. . al, .
condenser fan is on, and thus £, is large and h—’1s small.

o

As a result,

al
When condenser fan is off, the air flow rate is very low and A, is very small and h—’is

o

relatively large.. However, the data when unit is off is not used to build the model.

In order to decide whether the unshielded or shielded sensor’s reading should be used to

build the HVAC system models, both options were evaluated.

4.1.2 Rainfall impact on the system

Rainfall on the condenser will cause evaporative cooling and will increase energy transfer
rates. Rainfall will also influence the readings of exposed temperature sensor, Figure 4.4
shows that an unshielded sensor’s reading will be about 2 F lower than a shielded
temperature sensor in rainfall. The shielded sensot’s reading is the dry bulb temperature of
the ambient air and the unshielded sensor’s reading approaches the wet bulb temperature
of the ambient air, since the unshielded sensor is exposed to the rain and the rain water on
the sensor will evaporate and cool the rain water on the sensor. Although, this temperature
is not exactly the same as wet bulb temperature of the air, it is near to the wet bulb
temperature. So the difference between the shielded sensor and unshielded sensor is
dependent on the relative humidity of the air. However, normally the relative humidity of

air in rain will be high enough to make the difference within 2-3 F.
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Figure 4.4 Rainfall impacts on temperature sensor readings (Purdue field site)
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4.2 Data Processing
4.2.1 Driving condition problems

Of the three driving conditions, only outdoor air temperature and mixed air temperature
are measured directly at the California field sites. One way to get mixed air humidity is to
compute it from return air temperature and humidity and outdoor air temperature and
humidity. The mixing process for outdoor air (0a) with return air (ra) is shown as figure

4.5.

0.050

L | ) | L | L l L | L L
Pressure = 101.3 [kPa]

0.040

0.030

0.020

Humidity Ratio

0.010

0000 1 | 1 | 1 | 1 | 1 | 1 | 1
10 15 20 25 30 35 40 45

T[°C]

Figure 4.5 Outdoor air and return air mixing process

Tma _Tm — Wma _Wra
TO(J - Tma Woa - Wma

T ma > T va Toa , VVm and WO , are knowns, from the above equation Wm , 1s obtained and

thus the state of ma is settled. However, there are some problems with this scheme.

First, when 7, and 1|, are equal (T, should be equal to T, and T, ,), the state of ma

can not be determined, as depicted in figure 4.6.
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Figure 4.6 ma state cannot be determined when 7,, =T,

Second, when there is some uncertainty in the ra and oa states, the calculation according to
the above equation will amplify the uncertainty in the mixed air state, which is shown in

figure 4.7 schematically.
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Figure 4.7 Uncertainty analysis for MAW

Assume that the oa and ra uncertainties are within a circle with radius 7 and there is no

uncertainty in 7, ,, then the uncertainty for W, propagated and amplified by the oa and

ma >

ra uncertainties will be,

AW =2 o
sin@

It is obvious that the uncertainties will be propagated and amplified when 6 is less than
90°.
So it is necessary to add a mixed air humidity sensor to fix the ma state and avoid

uncertainty propagation and amplification.

However, there is another way to get mixed air humidity by computing it from return air

temperature and humidity, outdoor air temperature and humidity and ratio of return and

outdoor air mass flow rate f by following equation,
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ma ra

T.-T. W, -W,. m

oa ma

r..-T, W.,-W, m

Oa:f

ra

If the speed of the evaporator blower is constant, f approximates the ratio of return and

outdoor air duct damper positions, which can be readily obtained from Honeywell DCV

controllers. Although, unlike the first method, the ma state can be determined for any

case, uncertainties will be propagated and amplified when € is less than 90°.

In view of performance, it is still desirable to add a mixed air humidity sensor to avoid
uncertainty propagation and amplification. However, since the humidity sensor is relatively
expensive further work should be done to decide whether the extra expense is warranted

by the improved accuracy.

4.2.2 Steady-State Detector

In order to apply a steady-state model to a system, which spends considerable time in
transient operation, a steady-state detector is necessary. Thus, the error in the ability of the
model to fit the training data is added to the error introduced by the fact that the system is
almost never actually operating in steady-state. There are a number of desirable properties
of a steady-state detector method. It should be computationally efficient, require a small
amount of memory for storing values, be responsive to quick changes in operation, and be
able to distinguish between changes in measurements caused by transient operation and

measurement and system noise.

Three methods were studied by Davis (1995) through simulation for simple first-order
responses with artificial noise introduced. The three steady-state detector methods all
generate outputs which decrease as the system approaches steady-state. When the output
of the steady-state preprocessor drops below a threshold value, the system is determined to
be in steady-state. The first algorithm computes the slope of the best-fit line through a
fixed-length sliding window of recent measurements. The other two algorithms compute
the variance of recent measurements. One uses a fixed length sliding window of recent
measurements. The other method, introduced by reseachers at Landis and Gyr (Glass,
1995), recursively computes a weighted standard-deviation where more recent
measurements are weighted more heavily. Based on his analysis, Davis concluded that the

weighted standard-deviation method was the best of the three methods in terms of
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efficiency and performance for the simulated data that he studied. These methods,
however, have not been compared using real operating data. Breuker (1997) compared the
performance of the methods using actual transient data recorded for the FDD

demonstration shown in figure 4.8.

Each of the methods has design parameters that affect its performance. For the slope and
variance methods based on measurements in a fixed-length sliding window of recent
values, the number of measurements in the fixed-length window, the frequency with which
new measurements are taken, and the steady-state detector threshold are the design
parameters. Instead of using a fixed window length, the exponentially weighted variance
method uses a forgetting factor to reduce the contribution of successively older

measurements on the variance calculated at each step.

In order to compare the performance of the three methods, each was applied to a transient
start-up profile for hot gas temperature from a rooftop air conditioning unit. This analysis
used a fixed window length of 10 measurements and a forgetting factor of 0.7 with
measurements being taken from the test unit every 5 seconds. The forgetting factor of 0.7
was chosen to give similar outputs between the variance calculated from the sliding
window and the exponentially weighted variance. The first observation which can be made
about the slope method with the two variance methods is that the slope can assume both
positive and negative values, while the variance is only positive. This could lead to a
problem with the slope method, since an overshoot could be interpreted as steady-state
operation. For this reason, the methods which utilize variance rather than slope are more
reliable. Figure 4.8 shows that the two methods which utilize variance as an indicator of
steady-state operation have almost identical outputs during their transient startup. Since
the exponentially weighted method is more computationally efficient than the fixed-

window method, this method was selected for further study.
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Figure 4.8 Output of three steady-state detectors on Ty, measurement (Breuker,1997)

Finding the right forgetting factor is important in tuning the exponentially weighted
variance method for a particular application. As the forgetting factor increases, the
response of the steady-state detector becomes more stable and more sluggish. It appears
that a forgetting factor range of 0.6 - 0.8 provides reasonably quick response without

introducing too much short-term noise.

Figure 4.9 shows transient data and output of a steady-state detector during August 21 to
24 for the Purdue field site. An exponentially weighted steady-state detector with a
forgetting factor of 0.7 was used. The zero values of the detector output mean the system

was not considered to be at steady state. The steady-state detector appears to work well.
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Figure 4.9 Steady-state detection

4.2.3 Clustering of steady-state data

For some problems, the number of data points may be small enough that all of the data
available can be used directly in learning a model. In other problems, the number of data
obtained can become sufficiently large that it is no longer practical to assign a separate
node to each data. Clustering techniques can be used to group data so that the group can
be represented by only one data point. Clustering of steady-state data is necessary for the

following two reasons:

Firstly, there are measurement noise and system disturbances, so clustering will act

as a filter.

Secondly, clustering will reduce the large number of steady state data to much a
smaller set of steady state data. This will greatly reduce the nodes of the GRNN
and memory to realize the GRNN algorithm.

First, establish a single radius of influence, r . Starting with the first point (X,Y),
establish a cluster center, X', at X . All future data for which the distance ‘X -X i‘ is less

than the distance to any other cluster center and is also <7 would be grouped into cluster
I . A data point for which the distance to the nearest cluster is larger than » would become

the center for a new cluster. After clustering, the expectation (average) of each group data
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will be calculated to represent the whole group. The radius 7 is an important parameter for
the performance of clustering algorithm. For example, there are 256 of steady-state data
points after steady-state detection for the data taken during August 13 to 17 at Purdue field

site; there are 54 clusters after it is clustered.

4.3 Purdue Field Site Results

The interpolating performance of the polynomial plus GRNN model is very good, as
shown with laboratory data. The interpolating performance for field site data (partially
shielded condenser inlet air temperature) is also good, as shown in figures 4.10, 4.11 and

4.12.

To test extrapolating performance, three cases were considered, one using a partially
shielded condenser inlet air temperature, one using a fully shielded condenser inlet air
temperature and one using an unshielded condenser inlet air temperature. Since shields 1,
2 and 3 (figure 4.13) do not isolate the temperature sensors completely from solar
radiation, rainfall and wind the way the outdoor air duct does, “partially shielded” refers to
sensors shielded by shields 1, 2 and 3 and “full shielded” refers to the sensor in the
outdoor air duct (figure 4.13) which is totally isolated from the environment. Figures 4.14
to 4.22 show that models built with partially shielded condenser inlet air temperature have
reasonably good extrapolating ability which is the best among the three kinds of model.
Models built using unshielded condenser inlet air temperature extrapolate poorly. The
model that uses fully shielded condenser inlet air temperature data also extrapolates well
but a little worse than the partially shielded condenser inlet air temperature model except
that evaporating temperature is extrapolated better than with partially shielded model. So it
can be concluded that the solar radiation impact on the whole system is not so significant
as on the unshielded condenser inlet air temperature sensor. The readings of the
unshielded condenser outlet air temperature sensor exaggerate the solar radiation impact
on the system. In addition, the fully shielded sensor readings also underestimate the solar
radiation impact on the whole system. The exception is for the evaporating temperature
because the solar radiation and outdoor air temperature have very little impact on the

evaporator, which is mainly driven by mixed air temperature and humidity. In summary,

figure 4.23 shows an overview of the environmental factor impacts on modeling

performance.
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Figure 4.12 Interpolating performance for discharge temperature

Figure 4.13 Purdue field site setup
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Figure 4.15 Extrapolation performance of condenser temperature model using partially
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Figure 4.21 Extrapolation performance of condenser temperature model using fully
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4.4 California field site results

Since there are some problems with data collection in California, there is not enough data
to train models for every site. In this section, results are presented for one site, Milpitas.
The rooftop unit has one stage and is installed in a McDonalds. This rooftoop unit is a
little different from the unit at Purdue field site. First, there is no mixed air humidity
sensor available, so the damper position reading is used to calculate the mixed air humidity.
Second, from the data collected during August 28 to September 26 (Figures 4.24 and 4.25),
this unit kept cycling very frequently and seems that it never reached steady-state, so the
steady-state detector parameters were modified to get some “steady-state” data (Figure
4.26). A moving window steady-state detector with a fixed window width of 2 was used.
Figures 4.27 and 4.28 show the interpolation and extrapolation performance for
condensing temperature, respectively. The interpolation performance was evaluated by
randomly selecting two-thirds of the total data during August 28 to September 26 to train
the model and one-third of the total data to test the model. For figure 4.28, the data
collected during August 28 to September 15 was used to train the model and the data of
September 15 to 26 was used to test the extrapolation performance. These two figures
show that condensing temperature models worked reasonably well. Evaporating
temperature models had RMS errors of 0.7528 I for interpolation and 1.1152 F for
extrapolation. However, discharge line temperature models worked poorly and their RMS
errors were 2.345 I for interpolation and about 4 I for extrapolation. The discharge line

temperature takes the largest time to reach steady-state.
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5. Adaptive Polynomial plus GRNN

Although the polynomial plus GRNN model has excellent interpolating performance and
good extrapolating performance in the range of the training data, the extrapolating

performance far outside the range of the training data is not guarantied, especially for,
1. Noisy training data, which is a characteristic of measurement data
2. Sparse training data, which is normal when FDD is first commissioned
3. Range-limited training data, which is a normal case for field data
4. Strong nonlinear area where dry conditions change to wet conditions
5. Limited nodes, which will reduce memory greatly and reduce computing time

It is obvious that the interpolating ability is always far better than extrapolating ability. And
the nearer the data to training data, the better the extrapolation ability. So the model
perfomance can be improved greatly by enlarging the range of training data and changing
the model extrapolation issue into an model interpolation issue, which can be realized by
changing the fault free outside data into training data online. So it is advisable for a

modeling approach to be adaptive to improve the robustness of the FDD method.

In addition to extrapolating performance improvement, adaptive modeling also will
improve interpolating performance. The interpolating performance will be improved
further if some more nodes are added when the training data is very sparse and where it is

highly nonlinear, say, in the dry/wet area.

To realize the adaptability, modeling and FDD should be considered as a whole, because
fault free data should be guarantied in order to make use of the newly coming data. The
adaptive modeling scheme is shown as figure 5.1. After the model is trained using limited
original data, the model and the FDD system are commissioned. While the model and

FDD system are being commissioned, the measurements will be processed as follows:

Firstly, measurements will be feeded into a steady-state detector to obtain steady state data.
Secondly, steady state data are inputed to the preprocessor, where the model is embeded,
to decide whether the data are “ inside or near the training data” or not. If yes, the model
will generalize the measurements, and then feed the expected value to the classifier to
decide whether there is a fault or not, and if there is no fault, the new data will be recruited
into new training data and used to refine the original model . If the data are not  inside or

near the training data”, the incoming data will not be processed further but will be stored.
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Since air conditioners always cycle, there is no doubt that some data which are “inside or
near the range of training data” will appear. Using these coming “inside or near the training
data” data, the FDD system can decide whether the system has a fault or not. If not, it can
be said safely that the stored data also are free of a fault, so they can be recruited into the

new training data and used to adapt the model.

Since so far the FDD is not developed, here only modeling adaptability is discussed and
the combination of FDD and modeling will be not discussed here. The benefit of
modeling adaptability can be simulated by adjusting the number of training data with the
total number of data points being constant. The simulation results are shown in figure 5.2
using laboratory data collected by Breuker (1997) which are organized as table 5.1. Figure
5.2 shows that the model performance is improved considerably with the expanding range

of training data.

Inside o
State near the

Detector training
processor

Measurements

Figure 5.1 Adaptive modeling scheme block diagram
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Table 5.1 Data organization for adaptive modeling

Training data set

Driving conditions range

Training data

number T.,® T, (F) T,,® amount
1 73-71.5 70-85 58-62.5 16
2 73-79 70-90 58-64 35
3 71.5-79 065-90 56.5-64 48
4 71.5-80.5 05-95 56.5-65.5 67
5 70-80.5 60-95 55-65.5 96
0 70-82 60-100 55-67 135
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6. Conclusions and future work

So far,
[

Some literature about FDD modeling has been reviewed

Four black-box modeling approaches: polynomial, BP neural network, RBF
and GRNN, were compared using laboratory data

A polynomial plus GRNN modeling approach was proposed in order to
improve modeling perfomance and was tested using Purdue field site and one
california field site data. Some environmental facors have been investigated in
field modeling,

In order to further improve the robustness of FDD modeling, an idea of
adaptive FDD modeling was proposed and was simulated using laboratory data

Future work will be to,

Continue to complete the modeling work for California sites
Develop and implement a prototype FDD System

Develop an improved FDD method for handling multiple faults that occur
simultaneously

Implement improved FDD method in the field sites

Perform an economic assessment of the FDD system for California
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NOMENCLATURE

AHU = Air handling unit

o = False alarm threshold

B = Fault diagnosis threshold

d’ = Normalized distance square

EER = Equipment efficiency ratio

ATca = Condenser air temperature difference
AT,, = Evaporator air temperature difference
n, = Compressor volumetric efficiency

FDD = Fault detection and diagnosis

GRNN = General regression neural network
HVAC = Heating, Ventilating, and Air-Conditioning
M = Mean vector of residuals

m, = Refrigerant mass flow rate

y7i = Mean

N = Number of suction strokes per unit time
P = Relative humidity of return air

P, = Discharge pressure

= Suction pressure

Qcap = Cooling capacity

RBF = Radial basis function

RMS = Root mean square

RTU = Rooftop unit

o = Standard deviation

XY = Covariance matrix of residuals
Tamb = Ambient temperature

T.,. = Condensing temperature

T, = Discharge line temperature
Temp = Evaporating temperature

T, = Liquid line temperature

T, = Mixed air temperature

T, = Outdoor air temperature

T, = Return air temperature

Tsc = Sub-cooling

T, = Superheat

v, = Specific volume of compressor inlet refrigerant
VAV = Variable air volume

W = Compressor power consumption



1 Introduction

HVAC systems often do not function as well as expected due to faults introduced during
initial installation or developed in routine operation. Rooftop air conditioners are used
extensively throughout small commercial and institutional buildings, but compared to larger
systems, they tend to be not well maintained. As a result, widespread application of
automated fault detection and diagnosis (FDD), which has been used widely in critical
systems, will significantly reduce energy use & peak electrical demand, down time and

maintenance costs.

Unlike critical systems, FDD for HVAC systems, especially for rooftop air conditioners, is
subject to economic constraints. Economic constraints bring special difficulties and issues,

which do not need to be considered in critical systems.

First, since a rooftop AC is relatively inexpensive, the cost to realize FDD for HVAC
systems in terms of software and hardware should be low. Therefore some relatively
expensive measurements such as flow rate, pressure or even humidity, cannot be used. This
is a particular problem in fault diagnosis since some faults may have similar symptoms and
more sensors can help in distinguishing them. On the one hand, features as sensitive as
possible should be extracted from limited available measurements, and on the other hand,
the diagnosis method should be as sensitive as possible to isolate several faults with similar
symptoms and insensitive features. Computation should be small enough to be

implementable within a microprocessor.

Second, since HVAC equipment are used in diverse weather and climates, the behavior of
the HVAC plant will vary drastically. In addition, since single-point sensor placement is
generally used, many measurements often are biased and noisy. So the FDD should be able
to handle biased measurements and be robust to different operating modes and against noise

and disturbances.

Third, unlike critical systems in which faults have zero tolerance, a fault evaluation and
decision step should be added to assess the impact of a fault on overall system performance

and make a decision whether the benefit of servicing the fault justifies its expense.



Finally, unlike a critical FDD system which is engineered for a specific large system, FDD
for HVAC systems needs to be adaptive and generic to the same type of system, or at least
to similar models from the same product family. This would reduce the per-unit costs, which

need to be low compared to the HVAC equipment price.

So, FDD for HVAC systems should have analytical redundancy. That means the
information from system measurements should be preprocessed extensively before it is used
to detect and diagnose fault. In addition, the characteristic of being adaptive and generic

should be emphasized when developing FDD for HVAC systems.

This progress report first presents a literature review about FDD for HVAC systems,
especially for rooftop air conditioners, and then describes an improved FDD prototype for
rooftop air conditioning systems. Finally, the performance of the improved FDD method is

evaluated and compared with results of Breuker and Braun (1998b).



2 Literature review of HVAC system FDD

2.1 Overview

In the late of 1980’s, some researchers investigated common faults and methods for fault
detection and diagnosis in simple vapor compression cycles, such as a household
refrigerator. With the growing realization of the benefits brought by FDD, many more
papers about HVAC FDD have appeared in the recent ten years. Figures 2-1 and 2-2 show
the paper statistics in HVAC FDD over the past 15 years.

From these two figures, it can be seen that the number of papers significantly increased since
1996 and most of the papers focused on variable air volume (VAV) air handling units
(AHU). Since Comstock, Chen, and Braun (1999) did a very detailed and comprehensive
literature review in 1999, the next section of this report will briefly refer to some significant

contributions before 1999 and concentrate on up-to-date progress after that.

Paper statistics in HYAC FDD

35 1
30 -

25
20 -
15 1
10 1
5

S, .

1987-1989  1990-1992 1993-1995 1996-1998  1999-2001
Time

Number
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2.2 Latest progress

Since 1999, about 30 papers have been published. According to IEA ANNEX 34 edited by
Dexter and Pakanen (2001),

® Twenty-three prototype FDD performance monitoring tools and three validation tools
have been developed.

® Thirty demonstrations have been taken place in twenty buildings.
® Twenty-six FDD tools have been tested in real buildings.

® Tour performance monitoring schemes have been jointly evaluated on three documented
data sets from real buildings.

® A test shell has been developed to simplify the comparative testing of the FDD tools.

2.2.1 Packaged air conditioning systems

Rossi and Braun (1995, 1997) modified the general FDD supervision methodology first
described by Isermann (1984) for non-critical HVAC system as shown in Figure 2-1 and
developed a statistical rule-based FDD technique for vapor compression air conditioners.

This technique uses only nine temperatures and one relative humidity. Among the ten

return air temperature I, and return air

measurements, ambient air temperature Ta >

mb >



relative humidity ®,, (or wet-bulb temperature 7,,) are considered to be driving

conditions. The other seven measurements (evaporating temperature Tevap, condensing

temperature 1, suction line superheat T, , liquid line subcooling 7., comptessor

ond > sc?o

air temperature rise across the condenserAT, , and air

discharge temperature T, ca>

is >
temperature drop across the evaporator AT, ) are used to specify the system operating state.
A steady-state model is used to describe the relationship between the driving conditions and
the expected output states in a normally operating condition. By comparing the
measurements of the output states with those predicted by the steady-state model, residuals
are generated. These residuals are statistically evaluated to perform fault detection and
compared with a set of rules based on directional changes to identify the most likely cause of
the faulty behavior (diagnosis). In addition, fault impact evaluation criteria based upon
economic and operational constraints were developed. This research laid a blueprint for

later research, whose strengths and weaknesses will be discussed in a later part of the report.

Measurements

”| Fault Evaluation
1. Comfort
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Fault Detection 2
—> 1. Preprocessor 3. Safety
2. Classifier 4.  Environment

l

Decision
Fault Diagnosis 1. Tolerate
» 1.  Preprocessor 2. Repair ASAP
2. Classifier 3. Adapt Control
4.  Stop, Repair

HVAC Equipment

Figure 2-1 Supervision approach of HVAC&R equipment.

Following this research, Breuker and Braun (1997, 1998a, 1998b) first identified important
faults and their impacts on rooftop air conditioners through interactions with industry

personnel, and then did a detailed evaluation of the performance of the FDD technique



presented by Rossi and Braun (1997). It was found that by the frequency of occurrence,
approximately 40% of the failure incidents of "No air conditioning" were electrical or
controls related and the other 60% were mechanical. By the service occurrences, refrigerant
leakage (12%) dominated among the mechanical faults while the occurrences of faults
relating to condenser (7%), air handling (7%), evaporator (6%), and compressor (5%) are
similar. By the service costs, the faults related to compressor failure dominated with 24% of
total service costs. Controls related faults were the second-rated class of high cost fault,
accounting for 10% of total service costs. Further analysis showed that, although most
failures in hermetic compressors are diagnosed as a failure in the motor, those failures
usually result from mechanical problems such as overload or liquid refrigerant in the
compressor. Based on their survey and analysis, Breuker and Braun concluded that five fault
types should be considered for systems with fixed expansion devices: (1) refrigerant leakage;
(2) condenser fouling; (3) evaporator filter fouling; (4) liquid line restriction; and (5)

compressor valve leakage.

To evaluate the FDD technique presented by Rossi and Braun, the above five faults were
introduced within a 3-ton fixed orifice air conditioner in well-controlled environmental
chambers under various fault levels and cooling load levels. Results showed that refrigerant
leakage, condenser fouling, and liquid line restriction faults could be detected and diagnosed
before an 8% reduction in COP occurred; compressor valve leakage was detected and
diagnosed before a 12% reduction occurred; and the least sensitivity was evaporator fouling

at 20%. These results are compared with the improved FDD technique later in the report.

To keep track of the up-to-date research, Comstock, Chen, and Braun (1999) performed an
exhaustive literature review of FDD in HVAC. This review provided a solid background and

guide for later research.

The fault characteristics on a system with a TXV are different from those with a fixed orifice
for which Rossi and Braun originally developed the statistical rule-based technique. Chen
and Braun (2000, 2001) modified and evaluated the original FDD technique for a 5-ton
rooftop unit with a TXV as the expansion device. To simplify the FDD method, two
innovative and easy-to-implement methods were proposed. The first method, termed the

“Sensitivity Ratio Method”, used measurements and model predictions of temperatures for
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normal system operation to compute ratios that are sensitive to individual faults. The second
method, termed the “Simple Rule-Based Method”, dispensed with any on-line model but
used performance indices computed from raw measurements that are relatively independent
of operating state but are sensitive to faults. Both methods were tested using experimental
data for different fault types and fault levels at different operation conditions. Also, a 7.5-ton

unit from the same product family as the 5-ton unit was used for a robustness test.

Ghiaus (1999) presented a bond graph method for a packaged air conditioning system. The
bond graph is a graph in which nodes represent conservation of energy equations, and
terminal nodes represent either system elements (such as resistance, capacitance, inertia) or
sources. A bond is a power connection between two parts of the system: A and B. The
power is the product of power variables: effort and flow. Effort represents force, torque,
pressure, voltage, or absolute temperature, while flow represents velocity, rotational
frequency, volume flow rate, current, or entropy flow rate. For the air conditioning system, a
thermal bond graph used temperature as effort and entropy flow rate as flow. Two faults:
reducing the heat removed by the evaporator (by slowing the evaporator fan) and reducing
the heat rejected by the condenser (by slowing the condenser fan) were considered. The
advantage of the method is that it could diagnose a fault without any a priori knowledge of
the possible faults and implementation of the fault inference algorithm is fast and simple due
to its recursive nature. However, there are several drawbacks for this method. Firstly, the
method does not consider impact of variation in driving conditions on the bond graph, so it
cannot tell driving condition effects from faulty effects. Secondly, only two simple faults
were considered. If there is a refrigerant fault such as leakage or flow restriction, the
technique described in the paper could not make the correct diagnosis, due to the

assumption of constant refrigerant flow rate.

2.2.2 Other HVAC systems

There is a large body of literature on other HVAC systems, especially variable air volume
(VAV) air handling units (AHU) and chillers. Since this project is focused on rooftop air

conditioners, only recent and representative research is discussed here.
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Shaw and Norford (2002) presented two techniques for using electrical power data for
detecting and diagnosing a number of faults in AHUs. One technique relies on gray-box
correlations of electrical power with such exogenous variables as airflow or motor speed.
This technique was developed to detect and diagnose a limited number of air handler faults
and was shown to work well with data taken from a test building. The other method relies
on physical models of the electromechanical dynamics that occur immediately after a motor
is turned on. This technique has been demonstrated with sub-metered data for a pump and
for a fan. Tests showed that several faults could be successfully detected from motor startup
data alone. While the method relies solely on generally stable and accurate voltage and
current sensors, thereby avoiding problems with flow and temperature sensors used in other
fault detection methods, it requires electrical data taken directly at the motor, down-stream
of variable-speed drives, where current sensors would not normally be installed for control
or load-monitoring purposes. Later Norford and Wright (2002) presented some results from
controlled field tests and concluded that: the first-principles-based method misdiagnosed
several faults and required a larger number of sensors than the electrical power correlation
models, while the latter method demonstrated greater success in diagnosis (limited number
of faults addressed in the tests may have contributed to this success) but required power

meters that were not typically installed.

Yoshida and Kumar (1999) presented a model-based methodology for online fault detection
for VAV HVAC systems. Two models, Auto Regressive Exogenous (ARX) and Adaptive
Forgetting Through Multiple Models (AFMM), were trained and validated on data obtained
from a real building. Based on the results, it was concluded that the variation of parameters
rather than the difference between the predicted and actual output is more prominent and
reflective of a sudden fault in the system. The AFMM could detect any change in the system
but required a long window length and therefore may not detect faults of low magnitude.
The ARX model, on the other hand, could be used with very short window length and was
more robust. Yoshida and Kumar (2001a) further put forth an off-line analysis based on
ARX method. It was concluded that off-line analysis of data by this model was likely to
detect most of the faults. To evaluate the robustness of this technique, Yoshida and Kunmar

(2001b) developed a recursive autoregressive exogenous algorithm (RARX) to build the
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frequency response dynamic model for VAV AHUs. It was concluded that the method was

quite robust against sensor error and could detect and diagnose several types of faults.

Carling (2002) presented a comparison of three fault detection methods for AHUs. The
three methods were: a qualitative method that compares controller outputs and model-based
predictions, a rule-based method that examines measured temperatures and controller
outputs, and a model-based method that analyzes residuals based on steady-state models.
The author concluded that the first method was easy to set up and generated few false
alarms. However, it detected only a few faults of those introduced. The second method is
straightforward and detected more faults while requiring some analysis during setup. The
third method also detected more faults but it also generated more false alarms and
demanded considerably more time for setup. The third method may have generated more
false alarms because of poor steady-state detector performance and a bad detection and
diagnosis threshold. In this paper, an exponentially weighted variance steady-state detector
was used. Our investigation, which will be discussed in a later part of the report shows that
the variance method, either the exponentially weighted method or fixed moving window
method, is not robust enough and should be used together with a slope method for steady-

state detection.

Dexter and Ngo (2001) proposed a multi-step fuzzy model-based approach to improve their
earlier diagnosis results for AHUs. A computer simulation study demonstrated that a more
precise diagnosis can be obtained and experimental results also showed that the proposed
scheme does not generate false alarms. This method was based on the use of two kinds of
reference models, the fault-free reference model and one of the reference models describing
faulty behavior, to perform multiple-diagnosis. Although this new technique overcame some
weaknesses of the fuzzy method, the difficulty to summarize or generate fuzzy rules when

the number of fault types and levels and load levels increased could not be eliminated.

In addition to fuzzy methods, several investigators (Lee & Park, 1996, Li & Vaezi 1997)
attempted to use artificial neural network (ANN) directly to do FDD for AHUs. The
common feature of ANN FDD is to use an ANN to map the symptoms to the fault
indicators. The network must first be trained to recognize the symptoms of the possible

faults, which requires tremendous data for different load levels, fault levels and types. For
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complicated problems with many fault types and levels and operating conditions, it is
difficult, if not possible, to gather so much data. So recently there seems to be no research
on ANN for HVAC FDD. It should be clarified that although it is difficult to directly use
ANN to do FDD, it is very useful to use ANN to build fault-free reference models for
model-based FDD.

Finally, in the literature of HVAC FDD, some researchers (Salsbury & Diamond 2001, Liu
& Dexter 2001) attempted to deal with the FDD in control loop problems or use the

information from the controller to do FDD.

2.3 Future prospects

So far, FDD is at the laboratory or field demonstration stage, with most of the effort on
improving FDD performance with little concern about how to reduce the cost of FDD
techniques and at the same time to improve performance. Commercialization of FDD is a
big challenge, since many practical and economical issues should be addressed. The goal of
keeping the costs low while improving performance has guided the development of the
improved FDD method presented in this report. The only literature to address multiple
simultaneous faults in HVAC equipment was presented by Breuker (1997), who investigated
two simultaneous faults using simulation. However multiple simultaneous faults are possible.
For instance, evaporators and condensers foul at the same time. Breuker found that the
FDD technique of Rossi and Braun (1997) would detect and diagnose one of the two faults
that were implemented. However, in general, the presence of multiple simultaneous faults
could change the system behavior: produce compensated or exaggerated effects or even
trigger another symptom, which is normally not covered by existing rules. Existing
diagnostic classifiers are not capable of making multiple diagnoses. So the ability of the
system to respond to multiple simultaneous faults warrants further investigation. This issue

will be addressed at a later stage of this project.

There are two kinds of investigators conducting FDD research in the HVAC field,
mechanical and electrical engineers. Most of the research in HVAC FDD has been

conducted by the former, who have addressed the problem mainly from a physical point of
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view. The electrical engineering investigators normally lack physical knowledge about the
HVAC system and often approach the problem from a mathematical or empirical point of
view (such as fuzzy logic, neural network, wavelet, and etc.). Both kinds of investigators
claim their own methods are better than those of others. So it would be a good contribution
to attempt to make some contrasts and comparisons between these two kinds of methods.

Later research may address this issue.
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3 Description of FDD technique

3.1 Overview

The statistical rule-based FDD method, developed by Rossi and Braun (1997) and evaluated
by Breuker and Braun (1998b), is the basis for the method presented in this report and is
reviewed in Appendix 1. The method only uses low-cost temperature measurements to do
automated FDD, which is important for commercialization. The paper also introduced fault

evaluation to HVAC equipment FDD and developed four fault evaluation criteria.

One of the difficulties in applying the method is evaluating the probabilities associated with
the different faults that are possible. The method requires evaluation and integration of a 7-
dimensional probability distribution for the detection and diagnostic steps. In order to
simplify the calculations, the 7 temperature residuals are assumed to be independent.
However, our recent research indicates that it is possible to sacrifice fault detection
sensitivity and introduce false alarms with this independence assumption. So we have
improved on this technique by eliminating the independence assumption and developing an
improved FDD technique, which does not utilize a probability distribution for fault
detection or diagnosis. The improved FDD technique also incorporates an improved steady-
state detector, and improved models for the normal states used to calculate residuals and

overall performance models useful in the evaluation step.

To make the supervision approach for HVAC equipment clearer, Figure 2-1 is detailed and
modified as Figure 3-1. In Figure 3-1, there are two kind of signals, one indicated by bold
(red) lines and the other indicated by regular (black) lines, both of which begin and end at
the HVAC equipment. Bold (red) lines trigger the processing blocks, while the signals
associated with regular (black) lines are necessary for processing the blocks. The signals
associated with dotted (red) lines are used to adapt the model. The processing procedures

start from the HVAC equipment and follow the bold (red) lines.
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Figure 3-1 A generalized HVAC FDD system scheme

Data (including system driving conditions and state variables) gathered from HVAC
equipment are fed into the preprocessor, which includes at least two parts: a filter and
steady-state detector. The filter detects the HVAC equipment operating status and eliminates
the data when the HVAC equipment is off, and reduces some measurement noise. The
steady-state detector determines whether the system is considered to be at steady-state and

thus filters the transient data.

After preprocessing, measurements are split into driving conditions and measured current
operating variables. Driving conditions are first fed into the normal state models to produce
predictions of normal operating state variables. The residuals between current measured and
predicted normal operating states are used to detect whether the system is operating with a
fault. If the system operation is normal, the current measurements are used to adapt and
refine the normal state models. However, if the system is operating with a fault, residuals

are further used to diagnose the fault

Using driving conditions and fault information, the overall performance models estimate the

cooling capacity and power consumption associated with both the current and normal
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operating states. The residuals of these performance indices are used in the fault evaluation

step.

According to the fault name and level and performance residuals, a fault evaluation
algorithm evaluates the impact of the fault according to comfort, economic, safety, and
environmental criteria. Using estimated impacts, the FDD system will make a decision on

how to respond to the fault: tolerate, repair ASAP, adapt control, or stop to repait.

The next five sections discuss various aspects of the technique: measurement preprocessing,
steady-state models for normal states and overall performance, fault detection classifiers,
diagnostic classifiers, and fault evaluator and decision-maker. The focus is on the
development and evaluation of improvements in these elements. For the most part, the

evaluation has occurred using laboratory data obtained by Breuker (1998b).

3.2 Measurement Preprocessing

Because the proposed FDD systems are based on steady-state data with the compressor on,

the first step is to abstract steady-state measurements from real-time sampling data.
3.2.1 Measurement filter

The measurement filter is used to filter out data when the compressor is off or when there is
a communication error. The pressure difference between the compressor suction line and
discharge line can be used to detect whether the compressor is on or not. Sometimes there is
electrical noise or a disturbance in the data acquisition equipment, which makes the collected

data meaningless. This data cannot be used to do FDD and should be filtered out.
3.2.2 Steady-state detector

If there is no drift in the driving conditions, no noise and no other disturbances, all the state
variables will be constant. In practice, driving condition drift will make state variables vary
deterministically while noise and other disturbances will make state variables have random

variations. Two kinds of detection methods, a slope method and two variance methods, have
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been proposed to decide whether the system has approached steady-state (see Breuker
(1998b). If the variance threshold is set low enough, variance methods can filter out data
with both deterministic and random variations. Although the slope method can filter out
data with deterministic variations, it has difficulty distinguishing data with pure large
oscillating magnitude from those with pure small oscillating magnitude. The combination of

the slope and variance methods can improve the overall performance.

Figure 3-2 shows example behavior for three steady-state detectors using suction line
superheat as the measurement. Suction line superheat increases very quickly after the
compressor turns on. After reaching a peak, it drops slowly for a while and then oscillates
with decreased amplitude. For overall FDD, only those data after 450 seconds work well.

There would be false alarms if data before 450 second were used for FDD.

If only the moving window slope was used for detection and the slope threshold was set at
0.02 F/s, data at the beginning would be filtered out and all the oscillating data, with large
and small amplitude, would be classified as steady-state data. Consequently, this steady-state
detector cannot distinguish data with small oscillating amplitude from that with large
oscillating amplitude. If all oscillating data were used for FDD, false alarms or even wrong
detection and diagnosis would arise. So a moving window slope method itself cannot

guarantee good performance.

It is obvious from Figure 3-2 that the outputs of the exponentially weighted variance

method and moving window variance method are almost identical. If the variance threshold

were set at 0.3 F?, either of these two methods would filter out the data before 620 second

and thus the overall FDD system would have no false alarms and wrong diagnosis.

However, the cost to set the variance threshold at 0.3 F* is too high, because it filters out

the steady-state data between 450 second and 620 second. Thus, the overall FDD system

would delay its decision for 3 minutes. However, if the variance threshold were set at 0.7 F >
all the good performance data between 450 and 620 would be kept but the bad performance

data between 50 second and 200 second would be introduced. The combination of the

variance and slope methods is more robust. If the variance threshold were set at 0.7 F 2 and
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the slope threshold at 0.02F /s, then the use of both criteria would filter out all bad

performance data and keep all good performance data.

Suction line superheat ( F)

1.25

Varience ( F2 ) & Slope ( F/ Second )

|

| |

| |
T 1 T

|

|

|

‘ ‘ | gy 0.3
oving window slope Slope'threshold EE

I
I
AN I [P I I

L e e e e S e e L O 0
0 100 200 300 400 500 600 700
Time ( second)

Figure 3-2 Three steady-state detectors’ performance

3.3 Steady-state models

The proposed automated FDD technique relies on the use of steady-state models for
expected values of operating states under hypothetically normal operating conditions.
Furthermore, some on-line measurements such as power consumption and some overall
performance indices such as cooling capacity and EER are useful in evaluating whether
faults are severe enough for service to be performed. Calculation of cooling capacity

involves refrigerant or air flow rate. However, it is not economic to directly measure power
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consumption and flow rate. So a model (virtual sensor) for estimating refrigerant flow rate,

compressor power consumption and cooling capacity is very useful.
3.3.1 Normal state models

The last deliverable described a modeling approach for operating temperatures that
combines a low-order polynomial with a general regression neural network (GRNN) to

achieve both good interpolating and extrapolating performance.
3.3.2 Overall performance models

Overall system performance indices such as EER, power and capacity are useful for
monitoring and making decisions regarding the need for service. Direct online determination
of these indices requires flow rate and power measurements and would be too expensive for
a commercial product. However, it is possible to estimate these quantities using low-cost
on-line measurements and a compressor map, which is available from the compressor

manufacturetr.

Compressor maps give refrigerant mass flow rate and compressor power consumption as
functions of suction and discharge pressures (or temperatures) for a specified suction
superheat. These data can be correlated and used with on-line suction and discharge
measurements to estimate cooling capacity and EER. Since the compressor map covers
almost all the operating conditions, this model should be reasonably accurate unless the

compressor is not operating propetly.

The compressor map can be obtained from the manufacturer. Rather than correlating mass

flow rate directly, the compressor map data are used to calculate the volumetric efficiency of
the compressor and then volumetric efficiency is correlated. Volumetric efficiency (77,) is

defined as the ratio of volumetric flow rate at the suction of the compressor to the

volumetric displacement rate of the compressor. With this definition, the mass flow rate is
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where N is the number of suction strokes per unit time, V' is the displacement volume, and
v,is the inlet specific volume. After several trials, the following form for correlating

volumetric efficiency was adopted

Pdix

P,
+a, (ﬂ)2 +a,(T,

suc suc

a
ﬂv = aO + al - Tsuc') !

mb

where a,, a,, a,, a,, a,are empirical coefficients, P, is suction pressure, P, is discharge

pressure, T,

b

is compressor ambient temperature, T, is suction temperature. The cooling

Suc

capacity of the unit is estimated according to

Qcap = mr(hl - h3)

where h, is refrigerant enthalpy leaving the evaporator and h; is the refrigerant enthalpy

entering the evaporator. The refrigerant enthalpy entering the evaporator is assumed to be
the same as the enthalpy exiting the condenser and is calculated using refrigerant property
correlations with pressure and temperature as inputs. The refrigerant enthalpy leaving the

evaporator is evaluated with pressure and temperature as inputs.

Similar to mass flow rate, compressor power consumption, W, is correlated using the
following equation
NV Pdis

W =—"—(b, +b,
Vi

P,
+ b2 (i)z + b3 (Tumb - Tvuc )bA )

suc suc
where b, b,, b,, b; and b, are empirical coefficients.

EER s calculated from the estimated cooling capacity and power as

gER = 2o
W

where the units of EER are Btu/h-W.
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3.4 Fault detection

With the statistical rule-based FDD technique, faults can be detected and separated in one
step by calculating the probabilities that the current operating mode belongs to different
fault modes. However, to simplify the diagnosis procedure and improve the overall

performance, it is advisable to separate fault detection from fault diagnosis.

The fault detection classifier uses the residuals between the measurements and the model
expectation to detect the possible presence of faults in the system. When the system is
running under normal conditions (no faults), the residual(s) are assumed to be normally
distributed with a mean of zero (see two-dimensional example in Figure 3-3). When a fault
becomes severe, the distribution of the residual(s) should drift from the zero mean (see
Figure 3-4). A fault is detected if a significant difference in the residual distribution is
detected. That is, when the overlap of the actual distribution and the expected distribution
of the residual(s) decreases to a preset value (the classification error threshold), a fault is

considered to be at present.
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Figure 3-3 2-dimensional residual distribution when system is running in a normal mode
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Figure 3-4 2-dimensional residual distribution when system is running in a fault mode

The residual distributions can be characterized in terms of the covariance matrix ¥ . and

mean vector M, . and depicted in the residual space plane as in Figure 3-5. In the residual

space plane, any operating state (point) outside the normal operating region is classified as
pace plane, any operating stat t) outside th | operating reg lassified

faulty. The normal operating ellipse is the fault detection boundary.
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Figure 3-5 2-dimensional residual distribution
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The probability that the current operation is normal can be estimated by calculating the
overlapping area between the current and normal residual distributions. Direct calculation of
this overlap for high dimensional (e.g., 7-dimensional for our case) probability distributions
cannot be performed in real time on a microcomputer. Therefore, some simplifications are
necessary. The following sections consider simplifications to calculate fault probabilities and

a new method that does not require probability calculations.

3.41 Probability method

3.4.1.1 Independence assumption

The proposed FDD technique uses 7 temperature residuals to detect and diagnose 5 possible
faults for systems with a fixed expansion device. To calculate the overlap of two 7-
dimensional distributions, a seven-dimensional integral should be computed. Rossi and
Braun (1997) simplified the calculation by assuming that each dimension is independent.
However, by checking the normal operation data gathered by Breuker (1997), it has been

found that the covariance matrix in normal operation is far from diagonal (see Figure 3-6).

0.0185 0.0115 0.0556 -0.0041 0.0271 0.0005 -0.0100 |
0.0115 0.0120 0.0185 0.0021 -0.0068 0.0016 -0.0113
0.0556 0.0185 1.0544 0.1108 0.9209 0.0106 -0.1390
-0.0041 0.0021 0.1108 0.0596 0.1794 0.0001 -0.0530
0.0271 -0.0068 0.9209 0.1794 1.6472 -0.0086 -0.2350
0.0005 0.0016 0.0106 0.0001 -0.0086 0.0025 -0.0021
1-0.0100 -0.0113 -0.1390 -0.0530 -0.2350 -0.0021  0.0700

Figure 3-6 Covariance matrix X, of residuals at normal operation

Although Rossi and Braun (1997) and Breuker and Braun (1998b) obtained some good
results using this assumption, in theory, it is possible to sacrifice fault detection sensitivity

(see Figure 3-7) or introduce false alarms (see Figure 3-8) with this assumption.
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Figure 3-7 Fault detection sensitivity sacrificed by independence assumption
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Figure 3-8 False alarm introduced by independence assumption

Figure 3-7 illustrates a situation where fault detection sensitivity will be sacrificed if
independence is assumed. In this case, there is no overlap between the current and normal
operating modes with confidence of 0.999 (using the “true” covariance matrix), so the
current operation is indicated as faulty if the detection threshold is set at 0.001. However if

independence is assumed (using the “assumed” covariance matrix), there is a large
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overlapping region, about a quarter of the ellipse (probability equal to 0.25), between the
current and normal operating mode. The fault detection classifier will consider the current
operating mode as normal with the same threshold of 0.001. Consequently, fault detection

sensitivity is sacrificed (later calculation results in chapter 4 show this also).

In Figure 3-8, there is a small overlapping region between the normal and current
distributions, whose probability is more than 0.001, so that the current operation would be
considered as normal. However, the assumption of independence would lead to
classification of a fault and a false alarm. Although false alarms can be avoided by setting a

high threshold, this will reduce sensitivity.

3.4.1.2 Monte-Carlo (MC) simulation method

An alternative to the independence assumption is to use Monte-Carlo simulation to calculate

overlapping areas for high-dimensional probability distributions.

Given a general normal distribution Ny (M y,X ), whose characteristic parameters are

mean vector M yand covariance matrix2 y, the probability P, within area £, is

calculated with the following steps:
1. From the givenX , of X — space, find the whitening transformation of

-1/2 . .. ..
Y =AN"""®X , where X is any point in the original space, A and P are the
eigenvalue matrix and eigenvector matrix of X , respectively, and Y is the
corresponding point in the transformed space.

2. In the transformed Y — space withX, = I , generate N (>10.000 ) independent and
normally distributed samples, ¥, Y,, ---, ¥, , with zero expected vector and unit

covariance matrix.

3. Transform back the generated samples to the X — space by
X, =®A"?Y,  (i=12,..,N).

4. Add MX to the samples in the X — space as Xi +M (i=12,..,N).
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5. Calculate the number of points N within £, and then calculate the frequency of

N Q
f=-2
N
6. Repeat previous five steps K (>10) times and approximate the probability P, by

averaging the frequencies fj (j=12,..K).

This method cannot only approximate the theoretical value at any accuracy but can also be
implemented using a microcomputer. Although the Monte-Carlo simulation method is
accurate and provides a good way to check other probability methods, it requires relatively
large memory and computation time. So it is a good off-line analysis tool but still not
computationally efficient enough for on-line fault detection and diagnosis. Section 4

compares results of the Monte-Carlo simulation and the independence assumption methods.

3.4.2 Normalized distance method

This section presents a simpler approach, termed the normalized distance method, to do

fault detection.

For a 1-dimensional normal distribution N (,,,.u1> O normat ) > 1t 18 Well-known that

|'x - ﬂnormal

<30 ,,ma) =99.713%  or  prob( <3)=99.73%

prOb(|x - ﬂnormal

normal

|x - ﬂnormal

normal

where, can be seen as the distance between X and the mean £, . normalized

by the standard deviation O

normal *

The probability for all X whose normalized distance from

the mean g, is less than 3 is about 99.73% . This can be used for fault detection with

the following procedure:

1. Set a threshold & for false alarms. Normally @is a very small value, say 0.0027,
which means the probability for false alarm is 0.0027 .
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2. Calculate the maximum normalized distance dmax corresponding to the given false
alarming threshold & by referring to a normal distribution table. For a =0.0027,

the cortesponding maximum normalized distance d . is equal to 3.

|xi - /’lnormal

o

normal

3. Given a measurement X, , calculate the normalized distance by d, = If

d; <d,,,, the supervised system is considered to be normal with a confidence of

l-¢a. On the contrary, if d; >d then a fault is assumed with a false alarm

max >

probability of ¢&¥.

This method eliminates the need for the probability calculation and requires very little

computation and memory.

Inspired by the 1-dimensional case, the idea for one dimension can be extended to the

multi-dimensional case. The condition for normal operation can be rewritten as

|x - /’lnormal

prob( <d l-a

max ) -
normal

=

prOb((X - /’lnormal )(Gnarmal2 )_1 ('x - ﬂnormal) < drzlax) = 1 -

For a multi-dimensional case, the statistical parameters became vectors or matrices: X

2 )
and O becomes matrix X

normal

becomes a vector X , 4, becomes vector M

normal > normal *

Therefore,

prOb((X _Mnormal)TZ _I(X _Mnormal)) <diax) :1_a

normal

The key to generalizing from the 1-dimensional to a multi-dimensional case is determining

diax for given 1— . It can be proven that (X —-M, )Y (X - M, ) satisfies

normal

a ¥y 2 (n) distribution (see Appendix 2), where 7 is the dimension of the given distribution.

So the procedure to apply the normalized distance method to a multi-dimensional case is

almost identical to the 1-dimensional case:
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1.

2.

Set a threshold & for false alarms.

Calculate diax by referring to a } 2(7’1) distribution table or some software for a
given 1—@ and dimension 7. Table 3-1 shows some @ and corresponding

2 . . _
d max Values for dimension 1 = 7.

Given a measurement X, calculate the normalized distance squated by

d’=(X,-M,, )X _I(Xi -M, ). 1f dl.z <d? then the supervised

normal max >

system is assumed normal with a confidence of 1—@. On the contrary, if

d i2 >d?  then a faultis assumed with a false alarming probability of & .

max >

Table 3-1 & and corresponding diax for dimension n =7

Q 0.1 0.01 0.001 | 0.0001 | 0.00001 | 0.000001

l-a 0.9 0.99 0.999 | 0.9999 | 0.99999 | 0.999999

d2 12.0170 | 18.4753 | 24.3219 | 29.8775 | 35.2585 | 40.5218

3.5 Fault diagnosis

After a fault is detected it is important to determine which component of the system is

faulty.
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3.5.1 Fault diagnosis rules

To identify the detected fault from known fault types, it is important to know the
characteristics of each fault type expressed as a set of diagnostic rules. For example, when a

system with a fixed expansion device has a refrigerant leak,

® cvaporating temperature will decrease;

® suction line superheat will increase;

® condensing temperature will decrease;

® liquid line subcooling will decrease;

® discharge line temperature will increase;

® the temperature difference between condenser inlet and outlet air will decrease;

® the temperature difference between evaporator inlet and outlet air will decrease.

When a fault is detected and the above phenomena appear, it can be concluded that the
system has a refrigerant leakage fault. The evaluation of whether the states increase or
decrease must be done relative to the values under normal operation, which depend upon
the driving conditions. The normal state models provide the estimates of the normal states
as a function of driving conditions. However, there is uncertainty in both the current
measurements and the model predictions. Therefore, it is necessary to utilize a classifier to
identify which rule has the greatest probability of being correct and to evaluate whether the

evidence is strong enough to make a diagnosis.
3.5.2 Fault diagnosis classification

The diagnostic rules are expressed as positive and negative changes in residuals, so that each
fault type corresponds to a unique quadrant of a multi-dimensional residual space. To decide
which fault is the most probable is equivalent to identifying which quadrant the current
measurement belongs to. Combined with the normal operating ellipse, coordinate axes form

the fault diagnosis boundary (see Figure 3-9).

31



Residual-2 Fault diagnosis

boundary
Normal St
operation region ’

Residual-1

N

Fault detection

Fault diagnosis * boundary

boundary

Figure 3-9 Fault Detection and Diagnosis boundaries
Two methods were considered in this study: the probability and distance methods.

3.5.2.1 Probability Method
The probability method is based on statistical parameters associated with current operation.

According to the sampling data, the covatiance matrix X and mean M are

current current

estimated. The probabilities of different faults occurring is then estimated by calculating the

overlap of the probability distribution within each fault quadrant.

Ideally, the residuals reside at the origin of the multi-dimensional space at normal operating
states. As the fault develops, the probability of the current distribution within each fault
quadrant is calculated. To simplify calculation of probability within each fault quadrant,
Rossi and Braun (1997) assumed that the distributions of all measurements are independent.

The following equation was re-derived by Chen (2000):

Wj — anI %|:1 + Cjke’f‘(Mcurrent (k) - Mnormal (k)J]

k=1 \/22L‘urrent (k’ k)

where

j is the index of fault type j,
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w; is the probability of fault type j,
M is the sample mean vector,

Y. is the covariance matrix,

C,=1itM,,,,. (k)-M,, (k) has the same signas d , ; C,, = -1, otherwise.

Jko =
Subscript normal is for normal distribution
Subscript current is for current distribution

k is the index of the measurement.

When the probability of the most likely fault class exceeds that of the second most likely

class by a preset threshold (fault probability ratio threshold), a diagnosis is made.

It has been shown that the 7 residuals are not truly independent. So it is necessary to validate
the assumption of independence. Similar to fault detection, Monte-Carlo simulation can be
used to evaluate the probability for each fault. Table 3-2 shows the results of the two
different methods for refrigerant leakage at 20% load using the data collected by Breuker
(1997). Appendix 3 lists all the other results. From the results, it can be seen that the
probability values are different but the trends are the same. The probability of refrigerant
leakage increases with the level of this fault. At low fault levels, a liquid-line restriction has
the highest probability for both methods. However, the fault detection threshold would not
be sufficient to allow diagnosis at this level. Both methods would diagnose the correct fault
at higher levels. However, the evidence for refrigerant leakage is much stronger when the
probabilities are estimated with the Monte-Carlo approach. This leads to better FDD

sensitivity and a lower risk of false alarms.
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Table 3-2 Refrigerant Leak at 20% load

Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Method Leak Valve Leak | Restriction Foul Foul
Monte-Carlo 0 0.0010 0 0 0
Normal Independent 0.0008 0.0007 0.0015 0.0009 0.0004
Monte-Carlo 0 0 0.0034 0 0
3.5% | Independent | 0.0016 0.0004 0.0028 0.0004 0.0002
Monte-Carlo 0.0318 0. 0.0135 0 0
7% Independent 0.0039 0.0002 0.0027 0.0002 0.0001
Monte-Carlo 0.0803 0 0.0041 0 0
10% | Independent | 0.0067 0.0001 0.0017 0 0
Monte-Carlo 0.1037 0 0.0004 0 0
14% Independent 0.0023 0.0001 0.0008 0.0001 0.0001

3.5.2.2 Distance method

The probability methods require estimates of the covariance matrices for normal and current

X

operation, “normal and  urrent , and integration of the overlapping areas within each of the
fault quadrants. To perform these calculations without the assumption of independence is
not practical within a microprocessor controller. Figure 3-10 depicts a 2-dimensional
example of a simpler approach to fault diagnosis that does not require integration of the

probability distributions.

This method is called the simple distance method. In figure 3-10, there are two Cartesian
coordinates: one for the residual space with dashed coordinate axes and the other for the
double residual space with solid coordinate axes. This is because residuals, the difference
between measurements and model predictions, are not distributed with zero mean value

when the system operates normally because of modeling error. Assuming that the residual

mean value of normal operation is M which can be calculated before the FDD system

normal >

is commissioned, the residual of current operation can be denoted in the double residual

space by subtracting M from it. Later discussion is based on the double residual space.

normal
As shown in Figure 3-10, there are two possible faults occupying two different quadrants in
the 2-dimensional space with 4 quadrants (this assumption will make FDD more difficult

because in our case there are only 5 faults for a 7-dimensional space with 128 quadrants).
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Figure 3-10 Distance method for fault diagnosis

The distance method can be described as follows:

1.

Predefine a fault point for each fault quadrant. All the distances of the fault point

from all the axes should have the same magnitude and the magnitude should not be
less than the largest expected residual (e.g., 20 F). In Figure 3-10, F; and F,

represent fault quadrant I and fault quadrant II, respectively.

Calculate the distance from the current operating point to each fault point, for

example, the distance from P, to Fj, |P1Fl||:||Fl_Pl" and fromP, to F,,

|25 =|F. - £l

Find the two lines with the smallest distance (”Ple” in Figure 3-10) and the second

smallest distance ("PlFl” in Figure 3-10).
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4, Calculate the distance ratio of the smallest distance to the second smallest distance

(ratio :”PIFZM in Figure 3-10
dist > gure )

|PF,

5. When the distance ratio is less than a preset threshold £, then a fault corresponding
to the minimum distance will be indicated. In Figure 3-10, the fault point with the
minimal distance for P, is F,, and if the distance ratio is lower than a preset

threshold, fault II would be indicated.

Establishing a fault point at the largest expected residual makes the distance ratio inversely

related to fault level. For a 2-dimensional space, appendix 4 proves that all the points with
the same distance ratio, ratio,,, , are on a circle characterized with:

c(1+ ratio,*)

2ratio . ¢
2 2 _ dist 2
—) (-0 =—"5

(x+

. . 2
1 - ratio,, 1—-ratio,,

where x and y are the coordinates in the double residual space and cis the distance of the

fault point from each of axes. Given a value of c, a distance ratio corresponds to a circle in a

cluster of circles (see Figure 3-10), whose centers have the same y coordinate, ¢. Since
ratio,, is always less than 1, the scale of the magnitude of x coordinates of the center is

larger than ¢ and increases with increasing distance ratio, and the radius of the circles will

increase with increasing distance ratio but with larger magnitude than the former. In Figure

3-10, points B, P, and P, are on the same circle and thus have the same distance ratio,
while their distance ratios are smaller than that of pointP,. It is obvious that the fault

associated withpoint P, is less serious than those of points P, P, and P,.

It is important, but not critical, to have a reasonable estimate of the largest expected residual

in order to locate the fault points. For the example of Figure 3-10, point F, has a
significantly higher fault level than points P, P, P, P,, F, and P, and yet has the same

distance ratio as points F, P, and P, and a lower distance ratio than points F, and P,,.

However, if only correct diagnosis of fault type is necessary and diagnosis of relative fault
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level is not strictly considered, the standard of selecting the parameter ¢ associated with the
largest expected residual can be loosened. The choice for c¢is not critical and the actual fault

level can be more severe without any loss in accuracy for diagnosing a particular fault type.

For example, in Figure 3-10, if fault point P,, is the most severe fault level expected, F; and

F, will be reasonably good fault points.

From Figure 3-10, it can be seen that points P, F, and P, will be classified to fault type 1.
Points P, and P, are two special cases. They are actually not in any fault quadrant but
considering the statistical uncertainty, point P, would be classified to fault type 1I and point

P, to fault type 1. It should be pointed out that there is a risk of classifying points in other

non-fault quadrants to some predefined fault type, but the risk to make wrong diagnoses is
very low because of the following reasons: 1) The fault detection classifier filters all the
normal operating points. In Figure 3-10, although the ellipse normal region covers all 4
quadrants, it is classified as normal through the fault detection step; 2) The probability of
faulty operation appearing in other non-fault quadrants is very small, if the important faults
are considered and predefined by corresponding quadrants. It is very important to consider

as many faults as possible, at least those occurring frequently.

The risk of making wrong diagnoses for non-defined faults is not unique to the distance
diagnosis method. The only way to avoid this risk is to calculate the probability or distance in
all quadrants, fault and non-fault quadrants. For the probability method, it is not economical
to consider all 128 quadrants for a 7-dimensional case. Although probably not necessary, all
quadrants could be considered for the distance method because of low memory and

computational requirements.

3.6 Fault evaluation and decision

Fault evaluation is particularly important when the performance of a component is
degrading slowly over time, such as occurs for heat exchanger fouling. In this case, it is

possible to detect a fault well before it is severe enough to justify the service expense. In
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contrast, abrupt failures such as broken belts would not require the evaluation step when it is

obvious that the fault should be repaired (e.g., the system no longer maintains comfort).

In principle, fault evaluation could be achieved by minimizing lifetime operating costs. An
optimal service scheduler would purchase service when it contributes to reducing overall
costs. Important costs to consider are: maintenance, energy, equipment down time (i.e. the
cost of not maintaining comfort or refrigeration set point), premature component wear
(avoidable service costs), and liability costs associated with injury to people, damaged
facilities, or pollution of the environment. With the exception of maintenance and energy,
the other costs are difficult to quantify. The optimization problem could be simplified by
assuming that the comfort, premature wear, and liability costs are much larger than the
service cost to repair them. This is equivalent to assigning an infinite economic penalty for
these conditions (i.e. treating them as constraints) and minimizing the combined costs of
energy and service. With these considerations in mind, the following four fault evaluation

criteria are proposed for HVAC systems.

1. ECONOMIC CRITERIA - Service is required when it contributes to the reduction

of the combined costs of energy and service over the lifetime of the unit.

2. COMFORT CRITERIA - Service is required when the equipment is not capable of

maintaining building comfort.

3. SAFETY CRITERIA - Service is required when the operating state of the equipment
could lead to damage or injury (e.g. liquid entering a compressor or head pressure

above the tube burst pressure).

4. ENVIRONMENTAL CRITERIA - Service is required when the equipment is

polluting the environment. This criteria is included for refrigerant leaks.

Criteria 3 and 4 are relatively straightforward to apply. Service should be performed
whenever a fault within these categories is detected and diagnosed. The second criteria
could be handled in the same fashion: wait until the equipment could not maintain comfort
conditions and use the output of the diagnostic classifier to identify the required service.

However, this approach would lead to some loss in productivity. A better approach would
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be to evaluate the cooling capacity online and compare it to the peak required cooling

capacity. Using this information, service could be scheduled in advance of a loss in comfort.

The first criterion is based upon trading off service and energy costs. Rossi and Braun
(1996) developed a method for determining optimal service times for cleaning condensers
and replacing evaporator filters that balances service and energy costs. The method requires
a measurement of power and is relatively straightforward to apply. Inputs to the method are
the residual between the current power and power associated with normal operation and the

ratio of service cost to the unit energy cost.

Online cooling capacity and power measurements are expensive and not practical for
implementation within an FDD system for HVAC&R at this time. However, these

measurements can be estimated using the approach described eatlier in this report.
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4 Case study and method comparisons

The last report (2001) described normal operating data gathered by Breuker (1997) under
controlled conditions in a laboratory and described their use in training the normal state
models. In addition, five types of artificial faults were introduced at different fault levels and
the unit was tested at different load levels in order to evaluate the performance of the FDD
technique. The fives types of faults are refrigerant leakage, compressor valve leakage,
condenser fouling, evaporator fouling and liquid line restriction. Each fault was introduced
at four or five different levels and tested at five different load levels: 20%, 40%, 60%, 80%
and 100%. In all, there are 120 sets of fault data available to test the proposed FDD method.
Appendix 5 describes how the faults were introduced. For each of the different load levels,
the unit was on for different amounts of time. The total cycle time was held constant at 45
minutes and the on time was varied for the different load levels. For example at 20% load,
the unit ran for 9 minutes and was off for 36 minutes. Two consecutive transient start-up
responses were generated and data were recorded at 5-second intervals at each of the
conditions and fault levels. Measurements from the second transient were used to evaluate

the FDD performance.

Since transient states were recorded when the faults were introduced, data was fed to the

FDD prototype at the sampling frequency in order to imitate on-line FDD.
4.1 Measurement preprocessing

Since only transient-state data with the compressor on were recorded, there was no need to
use a measurement filter to detect whether the compressor is on or not. The steady-state
detector uses both the slope and variance methods. The length of the moving window was
set at 24 sampling data points (sampling time of 5 seconds). To make sure the system
reaches steady state, all the three driving conditions and 7 state variables were used for

steady state detection . The detector thresholds for the 10 variables are listed in table 4-1.
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Table 4-1 Thresholds for steady-state detector’s variables

T. |T D T T

at ra evap cond

T, T T AT | AT,

hg sc sh ca ea

Slope 0.028 | 0.028 | 0.0025 | 0.028 | 0.028 | 0.055 | 0.058 | 0.095 | 0.025 | 0.025
Threshold

(F1/s)

Variance
Threshold 0.28 |0.28 |0.05 0.58 [0.28 |0.58 |058 |1.085|0.25 |0.25

(F?)

4.2 Normal state and overall performance models
4.2.1 Normal state models

Inputs of the normal state models are ambient air temperature T,

ai’

return air temperature

T

ra

and return air relative humidity @ . As outlined in a previous report, the polynomial

plus GRNN approach is used to predict evaporating temperature 7, condensing

evap >

temperature 7,

cond >

discharge line or hot gas temperature 7, , liquid line subcooling T,

sc 2

suction line superheat T, , condenser air temperature increase AT, , and evaporator air

a

temperature decrease AT,, . In addition, another four variables: discharge line pressure P, ,

suction line pressure P

suct

suction line temperature T,

wer and liquid line temperature T, were
added in order to provide inputs for the overall performance (cooling capacity and power
consumption). The parameters of polynomial plus GRNN are listed in Table 4-2. Steady-
state training data with 95 normal operating conditions were used to train the model and

steady-state testing data with 35 normal operating conditions were used to test the model.

Results of the model performance were presented in the last report for this project.
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Table 4-2 Polynomial plus GRNN model parameters

T

evap cond

T, | T, | T, | AT, | AT, | T

g sc ca ea suct g suct

Polynomial order | 1 1 2 2 1 1 2 1 2 |2 2

GRNN Spread 0.1 |01 0.1 10.1]0.1 ]0.1 0.1 0.1 101]01 |01

4.2.2  Overall petrformance models

Opverall performance models (virtual sensors) include refrigerant flow rate, cooling capacity,
compressor power consumption and EER. The compressor map data for the test unit are
shown in Table 4-3. The models for volumetric efficiency and power were fit using the
manufacturer’s compressor maps and then used to estimate mass flow rate, cooling capacity,
power consumption, and EER for test conditions with the system operating normally.
Direct measurements of flow rate and compressor power consumption were also available
for these test conditions and used to evaluate the performance of this simple estimation
approach. Figures 4-1 and 4-2 show comparisons between measurements and estimates for
mass flow rate and cooling capacity. Predictions of mass flow rate and cooling capacity
based upon the compressor map were about 8% higher than those determined directly from
measurements. This difference may be within the normal range of expected performance of
this compressor model or possibly, this compressor deteriorated after extensive laboratory

testing.

As shown in Figure 4-3, the agreement between measured and estimated power
consumption was somewhat better and the overall bias in the predictions was much smaller.
The model overpredicts compressor power for high values and underpredicts for low values.
This could result from compressor deterioration. A deteriorated compressor would produce
lower mass flow rate with a lower isentropic efficiency. However, power consumption is
proportional to flow rate and inversely proportional to efficiency. Thus, there is a tradeoff

between these two factors. Furthermore, mass flow rate and efficiency depend upon the
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operating conditions so that the tradeoffs vary between conditions associated with low and

high power consumption.

Figure 4-4 shows comparisons of EER, where EER is the ratio of cooling capacity to power
consumption. At conditions associated with high values of EER (cooler ambients), the
model overpredicts cooling capacity and underpredicts compressor power leading to
relatively large errors in EER. For lower values of EER (warmer ambients), the cooling
capacity and power consumption error have the same sign and are of similar magnitude,

resulting in smaller errors in EER.

Other results for system performance when the system operates at fault conditions are given

in a later section (see evaluation section).
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Table 4-3 Compressor map data
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4.3 Fault detection and diagnosis

4.3.1 Fault detection

The technique used for fault detection is the normalized distance method. Three necessary

parameters are the covariance matrix and mean vector associated with normal operation,

Y ooma and M and the false alarm threshold @ . The former two parameters are

normal >

calculated from normal operating residuals. The covariance matrix X, .~ was shown in

Figure 3-5 for the test unitand M, ., is

norma.

M =[0.6255 0.6963 —1.3140 0.6544 —1.1815 0.1798 —0.1060]"

normal

To make the false alarm rate as small as possible, the false alarm threshold & was set at

0.0000001.

4.3.2 Fault diagnosis rules

Based on theoretical analysis, Rossi and Braun (1995) summarized the residual direction
change of five faults. Breuker and Braun (1997) confirmed all rules using laboratory tests
except for the compressor valve leakage fault rule. These modified rules are summarized in
Table 4-4 (+ indicates an increase in the residual, - decrease). The modification made was
that the hot gas temperature should increase with the occurrence of compressor valve
leakage. The simulation model Rossi and Braun used to generate the diagnostic rules did not
consider the energy of the refrigerant which leaks back into the suction line from the
discharge side when a compressor valve leaks. This refrigerant increases the compression
chamber temperature and tends to increase the discharge temperature. These rules were
intended to be generic for all similar types of air conditioners and should not require on-line

learning.

Ideally, the residuals reside at the origin of the multi-dimensional space at normal operating
states. However, practically there is measurement noise, system disturbances and modeling

error. Typically, residuals will be distributed with non-zero M, .., and X even at

normal
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normal operating conditions. The set of rules, M and X define a multi-

normal normal

dimensional space where each class (fault type) occupies a unique fault space. This means

that the Cartesian axes and normal operation ellipse form the classification boundaries.

Table 4-4 Fault diagnosis rules

Fault type 71evap th cond ]-;c 71hg AY;a AY;Q
Refrigerant leakage - + - - + - -
Comp. Valve Leak + - - - - - _
Liguid Restriction - + - + + - -
Condenser Fouling + - + + + -
Evaporator Fouling - - - - - +

4.3.3 Fault diagnosis method

The distance method is used to do fault diagnosis. The only two parameters are the distance

of fault points from the axes (c) and the diagnosis threshold ( ). For this case study, ¢ was

setat 10 F and B was set at 0.99 to avoid wrong diagnosis.

4.4 FDD results and comparisons with previous method

The FDD results are shown in Tables 4-5 to 4-20. For each fault, there are three tables. The
first table contains information about the detection results. Each entry in these tables gives
three pieces of data: the number of data points for each transient when the unit is on, the
number of points that were considered normal, and the number of points that were
classified as a fault. The number of data points increases with load level because the unit is
on a longer portion of the total cycle time. The second table in each set of three gives
diagnostic results. Each entry in these tables also gives three pieces of data: the number of
steady state points, the number of correct diagnoses, and the number of false diagnoses.
The third table in each set of three gives average diagnostic ratios for both the correct and

incorrect diagnoses.

49



In reviewing the results of Tables 4-5 through 4-20, it is apparent that all faults, except
refrigerant leakage, were detected and diagnosed correctly at all fault levels for all the load
levels. Refrigerant leakage was detected and diagnosed at all fault levels greater than the
lowest level and at all load levels. There were no incorrect diagnoses for any faults. If the
diagnosis threshold were set at 0.9995, refrigerant leakage would be detected and diagnosed
at the lowest fault level and all load levels. However, this change would lead to two incorrect
diagnoses for liquid line restriction at the lowest fault level with the 20% and 40% load
levels. The only difference between the rules for refrigerant leakage and liquid line
restriction is associated with liquid line subcooling. Furthermore, liquid line subcooling is

very noisy and experiences a relatively small change when there is a fault. To avoid incorrect

diagnoses, the diagnosis threshold should be set to 0.99.

Compared with the previous results obtained by Breuker and Braun (1998b), the proposed
FDD prototype has superior performance. Breuker and Braun (1998b) presented results in
terms of a “1" Detected” and “All Detected” level. The “1% Detected” level is the level at
which the fault was first successfully detected and diagnosed throughout the data set. The “All
Detected” level is the level at which the fault was detected and diagnosed during all steady-
state operating conditions. Table 4-21 gives comparative results for the two methods in terms
of these performance indices. As an example, the “1% Detected” refrigerant leakage fault level
is 3.5% for this proposed prototype and 7.8% for Breuker and Braun’s result, and “All
Detected” refrigerant leakage fault level is 7% for the proposed prototype and 9.5% for
Breuker and Braun’s result. Similar results occur for the other faults. The results of Breuker
and Braun do show some “1* Detected levels” that are below the lowest level of fault that was
introduced. This is because their results were calculated by interpolating the impact of the
fault level. This was not done for the current study.

Table 4-5 Detected ( , fault) points/ total operation points @ compressor valve

leakage fault

Load Level
20% 40% 60% 80% 100%
Normal (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359
7% (0,37)/108 | (0,80)/191 (0,56)/324 (0,379)/401 | (0,336)/396
Fault 14% 0,2)/172 (0,49)/143 (0,88)/216 (0,222)/288 | (0,544)/593
Level 19% 0,27)/108 | (0,33)/190 | (0,220)/304 | (0,340)/423 | (0,577)/569
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28%

| (0,79/108 | (0,90)/164 | (0,229)/324 | (0,341)/432 | (0,717)/782

Table 4-6 (Right, wrong) diagnosed points/ total detected steady-state points @
compressor valve leakage fault

Load Level
20% 40% 60% 80% 100%
Normal (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
7% (31,0)/31 (80,0)/80 (56,0)/56 (319,0)/319 | (336,0)/336
Fault 14% (2,0)/2 (49,0)/49 (88,0)/88 (222,0)/222 | (554,0)/554
Level 19% (21,0)/21 (33,0)/33 (220,0)/220 | (340,0)/340 | (511,0)/511
28% (19,0)/19 (90,0)/90 (229,0)/229 | (341,0)/341 | (717,0)/717

Table 4-7 Average (right, wrong) fault diagnosis ratio @ compressor valve leakage fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

7%

(0.9613, N/A)

(0.9418, N/A)

(0.9379, N/A)

(0.9260, N/A)

(0.9367, N/ A)

Fault| 14%

(0.9163, N/.A)

(0.9157, N/.A)

(0.9080, N/ A)

(0.9075, N/ A)

(0.9190, N/.A)

Level| 19%,

(0.8813, N/.A)

(0.8877, N/.A)

(0.8887, N/ A)

(0.8716, N/ A)

(0.8806, N/.A)

28%

(0.7747, N/.A)

(0.7794, N/ A)

(0.7630, N/A)

(0.7358, N/A)

(0.7260, N/ A)

Table 4-8 Detected (normal, fault) points/ total operation points @ refrigerant leakage

fault
Load Level
20% 40% 60% 80% 100%

Normal | (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359

3.5% (0,30)/104 | (0,67)/145 | (0,737)/216 | (0,245)/329 | (0,67)/175

Fault 7% (0,7)/108 | (0,727)/215 | (0,760)/279 | (0,257)/334 | (0,164)/224
Level 10% 0,24)/107 | (0,62)/166 | (0,770)/324 | (0,255)/336 | (0,737)/780
14% 0,6)/72 (0,77)/145 | (0,720)/322 | (0,314)/394 | (0,587)/646

Table 4-9 (Right, wrong) diagnosed points/ total detected steady-state points @
refrigerant leakage fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
3.5% (7,23)/30 (5,62)/67 (137,0)/137 | (245,0)/245 (67,0)/67
Fault
Level
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7% 7,0/7 | 021,0)/121 | (160,0)/160 | (251,0)/251 | (164,0)/164
10% | (24,00/24 | (62,00/62 | (170,0)/170 | (255,0)/255 | (731,0)/731
14% 6,0)/6 (11,0/11 | (120,0)/120 | (314,0)/314 | (581,0)/581

Table 4-10 Average (right, wrong) fault diagnosis ratio @ refrigerant leakage fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

3.5%

(0.9973,0.9974)

(0.9994,0.9968)

(0.9814,N/ )

(0.9924,N/ )

(0.9779, N/ A)

Fault

7%

(0.9800, N/ A)

(0.9858, N/ A)

(0.9772, N/A)

(0.9884, N/ A)

(0.9776, N/A)

Level

10%

(0.9404, N/ A)

(0.9779, N/ A)

(0.9481, N/A)

(0.9665, N/ A)

(0.9582, N/ A)

14%

(0.9095, N/A)

(0.9508, N/A)

(0.9404, N/ .A)

(0.9855, N/A)

(0.9693, N/ A)

Table 4-11 Detected (normal, fault) points/ total operation points @ condenser fouling

fault
Load Level
20% 40% 60% 80% 100%

Normal | (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359

14.6% | (0,20)/108 | (0,770)/216 | (0,230)/319 | (0,35)/431 | (0,650)/712

Fault | 29.2% | (0,34)/108 | (0,707)/190 | (0,726)/216 | (0,796)/288 | (0,435)/480
Level | 41.4% (0,2)/90 0,80)/173 | (0,217)/309 | (0,344)/418 | (0,207)/265
56.1% | (0,74)/108 | (0,733)/216 | (0,232)/311 | (0,333)/410 | (0,484)/544

Table 4-12 (Right, wrong) diagnosed points/ total detected steady-state points @
condenser fouling fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
14.6% (20,0)/20 | (110,0)/110 | (230,0)/230 (35,0)/35 (650,0)/650
Fault | 29.2% (34,00/34 | (107,0)/107 | (126,0)/126 | (196,0)/196 | (435,0)/435
Level | 41.4% (2,0)/2 (80,0)/80 (211,0)/211 | (344,0)/344 | (207,0)/207
56.1% (14,00/14 | (133,0)/133 | (232,0)/232 | (333,0)/333 | (484,0)/484
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Table 4-13 Average (right, wrong) fault diagnosis ratio @ condenser fouling fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

14.6%

(0.9329, N/.A)

(0.9542, N/.A)

(0.9373, N/ A)

(0.9544, N/ A)

(0.9555, N/.A)

Fault| 29.2%

(0.8197, N/A)

(0.8345, N/ A)

(0.8266, N/ A)

(0.8366, N/ A)

(0.8594, N/ A)

Level| 41.4%

(0.6598, N/ A)

(0.6834, N/ A)

(0.6924, N/ A)

(0.7060, N/ A)

(0.7323, N/.A)

56.1%

(0.5135, N/.A)

(0.5606, N/.A)

(0.5521, N/ A)

(0.5438, N/ A)

(0.5757, N/.A)

Table 4-14 Detected (normal, fault) points/ total operation points @ evaporator fouling

fault
Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/98 (70,0)/147 | (186,0)/277 | (208,0)/335 | (229,0)/359
12% (0,38)/108 | (0,722)/199 | (0,792)/316 | (0,777)/313 | (0,736)/188
Fault 24% (0,39/105 | (0,77)/157 | (0,217)/323 | (0,314)/429 | (0,330)/405
Level 35% (0,6)/96 0,98)/211 0,23)/216 | (0,200)/288 | (0,77)/128

Table 4-15 (Right, wrong) diagnosed points/ total detected steady-state points @
evaporator fouling fault

Load Level
20% 40% 60% 80% 100%
Normal (11,0)/11 (70,0)/170 (186,0)/186 | (208,0)/208 | (229,0)/22
9
Fault 12% (38,0)/38 | (122,0)/122 | (192,0)/192 | (111,0)/111 | (136,0)/136
Level 24% (39,0)/39 (77,00/117 (217,0)/217 | (314,0)/314 | (330,0)/33
0
35% | (L0)/21 | (35,0/33 | (220,0)/220 | (340,0)/340 | (511,0)/511

Table 4-16 Average (right, wrong) fault diagnosis ratio @ evaporator fouling fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

12%

(0.9843, N/ A)

(0.9400, N/ A)

(0.8950, N/A)

(0.8497, N/A)

(0.8302, N/ A)

Fault| 24%

(0.8252, N/.A)

(0.7929, N/.A)

(0.7888, N/A)

(0.7615, N/ A)

(0.7485, N/ A)

Level| 359%,

(0.7352, N/.A)

(0.6988, N/.A)

(0.6604, N/ A)

(0.6639, N/ A)

(0.6550, N/.A)
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Table 4-17 Detected (normal, fault) points/ total operation points @ liquid-line
restriction fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359
5% 0,27)/108 | (0,779)/216 | (0,44)/324 | (0,7183)/400 | (0,756)/479
Fault 10% 0,5)/72 (0,73)/162 | (0,171)/277 | (0,287)/432 | (0,87)/371
Level 15% (0,75)/108 | (0,777)/215 | (0,784)/294 | (0,244)/360 | (0,237)/440
20% (0,72)/105 | (0,97)/216 | (0,283)/301 | (0,374)/424 | (0,538)/630

Table 4-18 (Right, wrong) diagnosed points/ total detected steady-state points @ liquid-
line restriction fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
5% (21,00/21 | (119,0)/119 (44,0)/44 (183,0)/183 | (156,0)/156
Fault 10% (5,0)/5 (73,0)/13 (171,00/171 | (281,0)/281 (87,0)/87
Level 15% (15,0)/15 | (111,0)/111 | (184,0)/184 | (244,0)/244 | (231,0)/231
20% (12,0)/12 (91,0)/91 (183,0)/183 | (314,0)/314 | (538,0)/538

Table 4-20 Average (right, wrong) fault diagnosis ratio @ liquid-line restriction fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

5%

(0.9107, N/ A)

(0.9035, N/ A)

(0.9318, N/A)

(0.9243, N/ A)

(0.9450, N/ A)

Fault| 10%

(0.8095, N/.A)

(0.8125, N/.A)

(0.8525, N/ A)

(0.8685, N/A)

(0.8980, N/.A)

Level| 15%

(0.7030, N/.A)

(0.7105, N/.A)

(0.7607, N/ A)

(0.7945, N/ A)

(0.8232, N/.A)

20%

(0.6325, N/ A)

(0.6512, N/ A)

(0.7155, N/ A)

(0.7743, N/ A)

(0.8272, N/A)

Table 4-21 Performance comparison of previous and improved FDD method

Refrigerant Liquid-line Compressor Condenser fouling Evaporator
FDD leakage restriction valve leakage (14.6,29.2,41.4,56.1)% fouling
results (3.5,7,10,14)% | (5,10,15,20)% (7,14,19,28)% (12,24,35)%
1st All 1st All 15t All 1st All 1st All
Breuker 7.8 9.5 6.2 8.1 6.5 14.2 11.6 15.1 11.1 | 30.9
Improved 3.5 7 5 5 7 7 14.6 14.6 12 12
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To evaluate the impact of parameter ¢ on the performance of the FDD method, the results
with ¢ equal to 20 F and 1 F were calculated. The results show that the difference between
¢ equal to 20 F and 10 F is very small, while the difference between ¢ equal to 10 Fand 1 F
is very significant (see Figure 4-5 and Figure 4-6). From Figure 4-5, it can be seen that the
distance ratio monotonously decreases with increasing fault level if parameter ¢ is either 10

F or 20 F. However, the distance ratio behavior is different when parameter cis set to 1 F.

From Figure 4-6, it can be seen that the distance ratio is relatively constant with increasing
cooling load level for the same fault level if parameter ¢ is set to 10 F or 20 F but has a
different behavior when parameter cis set at 1 F. These results illustrate that it is not
necessary to have an accurate determination of the largest expected residual, c, as long as it is

large enough (e.g, 10 to 20 F).

In summary, the distance method has several following good characteristics. The
petformance of the method is good (good sensitivity for detecting/diagnosing faults) and is

relatively insensitive to the choice of parameters and different operating conditions.
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Figure 4-5 Impact of parameter ¢ on the performance of FDD for different compressor
valve leakage fault levels with 20% cooling load
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Figure 4-6 Impact of parameter ¢ on the performance of FDD for 3.5% compressor valve
leakage fault with different cooling load

4.5 Fault Evaluation Results

The data for the test unit includes refrigerant flow rate, cooling capacity, and power
consumption. As a result, it is possible to compare the impact of the different faults on
these actual performance indices and those calculated using the compressor maps. Tables 4-
22, 4-23 and 4-24 give the actual percent change of system performance and estimated

percent change of system performance for different faults.

Except for compressor valve leakage, the trend and magnitude of performance changes with
respect to fault levels are similar for the actual and estimated flow rate, cooling capacity and
power consumption. Compressor valve leakage has a significant effect on refrigerant flow
rate (up to —15%) and thus cooling capacities and compressor power consumption.
Refrigerant leakage at the levels considered had a small effect on refrigerant flow rate,
cooling capacities, and compressor power consumption. Condenser fouling also had a
relatively small effect on refrigerant flow rate and capacities, but had a significant effect on
power consumption. Evaporator fouling had a small effect on refrigerant flow rate,

compressor power consumption, and cooling capacity. Liquid line restriction had a
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significant effect on refrigerant flow rate, and thus cooling capacities and compressor power

consumption.

The overall performance models (virtual sensors) do not provide accurate estimates of
refrigerant flow rate and cooling capacity when the compressor operates abnormally since
they are based upon correlated compressor data obtained for normal operation. When the

compressor has a fault, the volumetric and isentropic efficiencies will be reduced.

Table 4-22 Actual /estimated per cent change of compressor power consumption

Fault Fault level
name | normal 1 2 3 4
compnv 1/1.3 2/2.4 3/3 4/3.5 7/5.6
refleak 1/1.2] 1/-0.7| 1/-0.25 -1/-5| -2.5/-6
condfoul 1/1.2| 2.5/2.7 4/5.8 7/9.6| 10/13.8
evapfoul 1/1.2 1/1.2] -1/0.6] -2/-0.6
lIrestr 1/1.2 1/-2]-0.5/-3.8 -3/-7| -8/-13

Table 4-23 Actual /estimated per cent change of cooling capacity on refrigerant side

Fault Fault level
name | normal 1 2 3 4
compnv| [SH WIS BES IS NS
refleak 1/1 1/-0.2| 1/-1.6| -1/-83.6| -3/-6.5
condfoul 1/1 1/0.2|-1.5/-0.5| -3.5/-2 -6/-5
evapfoul 1.5/1| 0.6/-0.2| -2/-2.5| -4/-3.8
lIrestr 1.5/1 1/-1 -1/-2| -3.5/-6| -12/-12

Table 4-24 Actual /estimated per cent change of refrigerant flow rate

Fault Fault level
name | normal 1 2 3 4

compny E -3/8| 595 -7/125 -15/22]

refleak -0.2/-1| -1.5/-3 -3/-6 -6/-9

/1.5
condfoul .5/1.5 2/1.5 3/3 3/4 4/5
evapfoul| 1.5/1.5] 0.5/0.5| -1/-0.4 -2/-2
llrestr| 1.5/1.5| -1.5/-3 -4/-6| -9/-12| -22/-24
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5 Conclusions

Following the literature review by Comstock et. al (1999), up-to-date literature on HVAC

FDD was reviewed. FDD techniques developed by previous investigators were studied. An

improved FDD prototype and a case study were presented. The new FDD technique

improves on previous methods in the following aspects:

v

Incorporates a new steady-state detector, which is a combination of the slope and
variance methods. This new steady-state detector has better robustness for filtering

transient data and thus improves overall FDD performance.

Incorporates a new modeling approach for predicting normal operation variables,

which was documented in the last report.

Incorporates a novel fault detection classifier called the normalized distance method,
which eliminates the probability calculation and requires very small memory and

computation.

Incorporates a new fault diagnosis classifier called the simple distance method. This
method also does not require multi-dimensional probability calculations or online

estimation of the current covariance mattix.

Incorporates overall performance models, which act as virtual sensors to estimate
some system performance variables that cannot be economically measured. These
system variables can be used to access the impact of the fault on the system

performance in order to evaluate whether service should be performed.
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Appendix 1 Details Of Statistical Rule-Based Method By

Rossi/Braun

The structure of the FDD technique developed by Rossi and Braun (1997) is depicted in
Figure 1. The technique requires the measurement of nine temperatures and one relative
humidity on the rooftop unit. If the supply voltage to the air conditioner and the supply
airflow rate can be assumed constant, the driving conditions (input U) for the vapor
compression cycle are the ambient temperature (T,,), return air temperature (T,) and the
return air relative humidity (RH,)). Given those inputs, the performance of the vapor
compression cycle is determined. That’s, in a normally operating, simple rooftop air
conditioning unit (on/off compressor control, fixed speed fans), all the output states (Y) in the
system are assumed to be functions of only these three driving conditions. The output state
measurements used by this technique are five refrigerant temperatures and two air

temperatures. They include: 1) evaporating temperature (T 2) suction line superheat (T,),

evap) >

3) condensing temperature (T4, 4) liquid line subcooling (T,), 5) hot gas line or compressor

con
outlet temperature (T,,), 06) air temperature rise across the condenser (AT,), and 7) air
temperature drop across the evaporator (AT,). A steady-state model is used to describe the
relationship between the driving conditions and the expected output states in a normally
operating system. By comparing the measurements of the output states (Y .) with those
predicted by the steady-state model (Y.,,), tesiduals (AY) are generated. These residuals are
used to perform detection and diagnosis. The detection classifier uses the residuals to
determine a binary “fault” or “no-fault” output. The diagnostic classifier also uses the

residuals to identify the most likely cause of the faulty behavior.

Since a steady-state model is used to predict normal operating states, a steady-state detector
must be used to distinguish between transient and steady state operation. The next four
sections discuss the various aspects of the technique: a steady-state preprocessor, a steady-

state model, a fault detection classifier and a diagnostic classifier.
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Figure 1 Summary of Rossi/Braun statistical FDD method.
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1.1 Steady-state preprocessor

Usually rooftop air conditioners use on/off control for the indoor temperature control.
Because of the many on and off cycles, they spend a lot of time in the start up and shut down
transient states. However, they also spend a considerable time near steady state. To
incorporate a steady-state model in the FDD method, a steady-state detector is used to
determine whether the system is operating near steady state. When the output of the steady-
state preprocessor is below a preset threshold value, the system is regarded to be in steady state
such that the application of a steady-state model is reasonable. Breuker and Braun (1998b)
analyzed three different algorithms for the determination of steady-state conditions. They were
the slope of the best-fit line through a fixed-length sliding window of recent measurements,
the variance of a fixed-length sliding window of recent measurements, and the exponentially
weighted variance of a sliding time window. Breuker concluded that the exponentially
weighted variance method is the best to use on the transient response of the rooftop air

conditioning unit. Compressor discharge temperature was used as the steady-state detection

64



measurement because it was found to take the longest time to reach steady state among all the

measurements.
1.2 Steady-state model

Since a rooftop unit spends much of the time near steady state and the faults will affect the
steady-state operation, a steady-state model is appropriate to identify the expected
performance. Breuker and Braun (1998b) investigated two model types: linear regression
polynomial models and look-up tables. They found that refrigerant suction superheat, hot gas

temperature and refrigerant liquid subcooling are best modeled using third-order polynomials.

T, and AT, are best modeled using second-order polynomials. First-order polynomial models
perform well for other measurements. A set of 80 training points appeared to be the least
amount of data appropriate for training.

A comparison of the linear regression polynomials and look up tables with linear interpolation
showed that they result in similar accuracy given the same 80 training points. The difficulty
with the look-up table model is that it is hard to get the uncertainty information, which is
important for statistical analysis.

The number of inputs required is also important in deciding which type of model to use.
Models that used three inputs (return air dry bulb temperature, return air wet bulb temperature
and the ambient temperature) generate the most accurate predictions. A two-input model
(return wet bulb temperature and ambient temperature) may give similar results, but
eliminating the humidity measurement as an input could greatly sacrifice model accuracy in

some situations.

1.3 Fault detection classifier

The detection classifier uses residuals to determine whether the current equipment behavior
is normal or faulty. The residuals are calculated by comparing the current output
measurements with the expected output values generated by a steady-state model. When the
current residuals are statistically different than the expected residuals (zero mean), a fault is
identified. Figure 2 shows a one-dimensional example of the detection classifier, with the
Tsh residual plotted on the x-axis and the output of the probability density function for the
Tsh residual plotted on the y-axis. The two curves represent the probabilities [P(Tsh)] of

obtaining specific residuals for normal and faulty measurements. The uncertainty of the
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residuals is assumed to follow a Gaussian distribution. The integrated overlap of the two
distributions, which indicates the likelihood that the faulty distribution of residuals
represents normal operation, is termed the classification error. A fault in the system will
cause a difference in the mean values and/or standard deviations of the residuals. As the
fault becomes progressively worse, the difference between the mean values increases and the
classification error decreases. Once the classification error drops below a threshold value, a
fault is indicated by the detection classifier. In order to compare the current behavior with
expected behavior using all seven output state measurements, an optimal linear classifier
(Fukunaga 1990) is used. The residuals for the current and expected operation are fitted to a
Gaussian model which can be completely described by the mean vector and covariance
matrix (Rossi and Braun, 1997). A value of 10-3 has been used as the threshold for

classification error for all quantitative analyses published by Rossi and Braun.
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Figure 2 Residual in 1-D.

1.4 Diagnosis classifier

The role of the diagnostic classifier in the FDD system is to determine the most likely
explanation of the faulty behavior occurring in the system using a set of diagnosis rules.
Rossi and Braun (1997) developed a set of rules related to the faults of interest through
simulation modeling and tested the rules using experiments at a single point. Breuker and
Braun (1998b) confirmed this set of rules using experiment data, although one rule was
modified. These rules are summarized in table 1(+ indicates an increase in the residual, -

decrease). The modification made was that the hot gas temperature should increase with the
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occurrence of compressor valve leakage. The simulation model Rossi and Braun used to
generate the diagnostic rules did not consider the energy of the refrigerant which leaks back
into the suction line from the discharge side when a compressor valve leaks. This refrigerant
increases the compression chamber temperature and tends to increase the discharge
temperature. These rules were intended to be generic for all similar types of air conditioners

and should not require on-line learning.

Table 1 Diagnosis rules for rooftop air conditioners (with a fixed orifice as the expansion
valve).

Fault Tevap Tsh Teond Tse Thg ATca ATea
Refrigerant leakage - + - - + - -
Comp. Valve Leak + - - - + - _
Liquid Restriction - + - + + - -
Condenser Fouling + - + - + + -
Evaporator Fouling - - - - - ; +

The set of rules defines a multi-dimensional space where each class (fault type) occupies a
unique quadrant. This means that the Cartesian axes form the classification boundaries. Ideally,
the residuals reside at the origin of the multi-dimensional space at normal operating states. By
integrating the overlap of the current distribution with each of the fault classes described by
the set of rules, the probability that the current behavior can be explained by each of the fault
classes can be calculated and compared (Rossi and Braun 1997). The following equation

shows how this probability is calculated:

j is the index of fault type j,
w is the probability of fault type j,
M is the sample mean vector,

z is the covatiance matrix,

C,=1if M, (k)—MN (k) has the same sign as dy;; C; = -1, otherwise.
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Subscript N is for normal distribution

Subscript c is for current distribution

k is the index of the measurement.
While calculating the overlap within each class, the distributions of all measurements are
assumed to be independent. When the most likely fault class exceeds the second most likely

class by a preset threshold (fault probability ratio threshold), a diagnosis is made.
1.5 Evaluation of the statistical rule-based FDD

Breuker and Braun tested the statistical FDD technique on a 3-ton rooftop unit with a fixed
orifice as the expansion device. They presented two prototype designs chosen for evaluation
whose parameters are summarized in Table 2. By interpolating the experimental data, their
performances were evaluated. Tables 3 and 4 summarize the sensitivity of the two prototypes
for the FDD technique applied to a fixed orifice system. Two indices were used to quantify the
sensitivity of the technique, the “First Detected” level and the “All Detected” level. “First
Detected” level is the level at which the fault is first successfully detected and diagnosed. “All
Detected” level is the level at which the fault can be detected and diagnosed during all steady-

state conditions.

Table 2 Statistical FDD method parameters used by Breuker and Braun (1998b).

FDD Design Parameter “Low-Cost” Design “High-Performance”
Design
Steady-state model Two / Tamp polynomial, | Tra /  Twp /7 Tamb
1** order polynomial polynomial. Ty, Ty, 3™

order polynomial, Ti,
AT, pnd order
polynomial, others 1%
order polynomial

Measurements Tevap, Tsh, Thg, Tcond, Tsc Tevap, Tsh, Thg, Tcond, Tsc,
ATea, ATy

Steady-state detector (SSD) threshold | 0.04 F 0.04 F*

Forgetting factor for SSD method 0.7 0.7

Fault probability ratio threshold 2.0 2.0

Confidence interval for model | 68% 68%

uncertainty

FDD buffer size / frequency 30 measurements @ 5 | 30 measurements @ 5
second intervals second intervals

Detection error safety factor 10 10

Detection error threshold (calculated) 0.0029 0.0029
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Table 3 Sensitivity of Statistical FDD method (low-cost design) on a rooftop unit with a

fixed orifice.

Performance Refrigerant | Liquid Line | Compressor | Condenser | Evaporator
Index
Leakage Restriction | Valve Leak Fouling Fouling
(% Leakage) (% AP) (% Any) (% Lost area) | (% Lost flow)
Ist| All Ist| All Istf All Ist  All Ist  All
Fault Level (%) 9.7/ 1251 9.0 10.5 17.5] 20.0] 16.4] 19.5| 27.2] Max
% Loss Capacity 55 7.1 4.6 54 107 12.2) 3.2 3.6 15.3] >194
% Loss COP 32| 4.1 33| 3.8 11.9] 13.6] 4.6] 62| 13.5 >174
ATy, 9.2| 1051 7.8 8.9 59| -6.8] -19 -3.0f -4.6] <-5.5
AT, 76 931 79 9.0 0.0 04 23] 24| -3.8] <-5.1

Table 4 Sensitivity of Statistical FDD method (high-performance) on a rooftop unit with

a fixed orifice.

Performance Refrigerant | Liquid Line | Compressor | Condenser | Evaporator
Index
Leakage Restriction | Valve Leak Fouling Fouling
(% Leakage) (% AP) (% Any) (% Lost area) |(% Lost flow)
Ist|  All Ist|  All Ist|  All Ist All Ist  All
Fault Level (%) 5.4| Max 2.1 4.1 3.6 7.0 11.2 17.4 9.7 20.3
% Loss Capacity 34/ >8 1.8 34 37 73] 25 35| 54| 115
% Loss COP 2.8] >4.6 1.3 251 39 79| 34 5.1 49] 103
ATy, 54| >11 23| 438 -1.8] -3.6] -0.6 -1.6| -1.7| -2.7
AT, 48| >10 24| 48] 0.0 0.0 1.8 23| -1.2 2.7
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Appendix 2 Proof for normalized distance method

Given a general normal distribution N, (M ,X), whose characteristic parameters are mean
vector M and covariance matrix X . From the given X of X —space, find the diagonized
transformation of ¥ =®” X , where X is any point in the original space, ® is eigenvector

matrix of X, and Y is the corresponding point in the transformed space.

D=E{Y})=®"E{X}=d'M

A=E{(Y-D)Y -D)"}
=®"E{(X -M)X —M)"}
=P'rP

where D=| : and A= are the expected vector in the

dn L ﬂ’n _

diagonized space and eigenvalue matrix of X, respectively.

The normalized distance from any point X to mean vector s,

d’=(X-M)'2'"(X-M)
= (®Y —®D)" (PAD" ) (®PY — ®PD)
=Y -D)®"(®")'A'®'®(Y - D)
=Y -D)A'(Y-D)

_ N ()’, _di)z
277

n —d.
:Z()’, ,)2

N

It is obvious that,

iy .

7
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So.d* =3 =4y < )

JA
Appendix 3 Other load level and fault results

The following 5 tables list probability computation results using Monte-Carlo simulation
and simple independence assumption. At each load level, numbers on the first line are
calculated using Monte-Carlo simulation and those on the second line using
independence assumption.

Refrigerant leakage fault results at other load levels

Load Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Leak Valve Leak Restriction Foul Foul
Normal 0 0 0 0 0
0 0 0.0035 0 0
1 0.0004 0 0.0164 0 0
0.0010 0 0.0071 0.0001 0.0001
2 0.0213 0 0.0597 0 0
40% 0.0063 0 0.0163 0 0
3 0.0634 0 0.0768 0 0
0.0081 0 0.0109 0 0
4 0.1517 0 0.0488 0 0
0.0113 0 0.0061 0 0
Normal 0. 0.0040 0 0.0001 0
0.0001 0.0002 0.0055 0.0003 0.0001
1 0.0064 0.0009 0.0121 0.0006 0
0.0040 0.0008 0.0056 0.0013 0.0005
2 0.0759 0 0.0496 0 0
60% 0.0142 0 0.0100 0 0
3 0.2388 0 0.0255 0 0
0.0464 0 0.0044 0 0
4 0.3412 0 0.0255 0 0
0.0755 0 0.0044 0 0
Normal 0 0 0 0 0
0 0 0.0043 0 0
1 0.0039 0 0.0543 0 0
0.0004 0 0.0187 0 0
2 0.0669 0 0.1683 0 0
80% 0.0045 0 0.0276 0 0
3 0.2874 0 0.0867 0 0
0.0427 0 0.0145 0 0
4 0.1621 0 0.3133 0 0
0.0105 0 0.1078 0 0
Normal 0 0.0010 0 0.0002 0.0003
0 0 0 0 0
1 0.0016 0 0.0048 0.0010 0
0.0026 0.0004 0.0027 0.0007 0.0004
2 0.0807 0 0.0815 0 0
100% 0.0050 0 0.0065 0 0
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3 0.4284 0 0.0563 0 0
0.1285 0 0.0030 0 0
4 0.4382 0 0.1120 0 0
0.1624 0 0.0262 0 0
Compressor valve leakage fault results
Load Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Leak Valve Leak Restriction Foul Foul
Normal 0 0.0009 0 0 0
0.0008 0.0007 0.0015 0.0009 0.0004
1 0 0.1821 0 0.0010 0
0.0022 0.0033 0.0012 0.0017 0.0013
2 0 0.1950 0 0.0083 0
20% 0.0006 0.0011 0.0004 0.0007 0.0006
3 0 0.3200 0 0.0520 0
0.0010 0.0078 0.0003 0.0027 0.0021
4 0 0.4560 0 0.0261 0
0.0009 0.0154 0.0001 0.0020 0.0019
Normal 0 0 0 0 0
0. 0. 0.0035 0. 0.
1 0 0.1210 0 0.0088 0
0.0017 0.0068 0.0039 0.0021 0.0015
2 0 0.1267 0 0.0015 0
40% 0.0010 0.0042 0.0021 0.0015 0.0013
3 0 0.2589 0 0.0013 0
0.0025 0.0142 0.0034 0.0017 0.0014
4 0 0.5018 0 0.0005 0
0. 0.0433 0. 0.0008 0.0009
Normal 0 0.0042 0 0.0001 0
0.0001 0.0002 0.0055 0.0003 0.0001
1 0 0.2646 0 0.0284 0
0.0038 0.0414 0.0022 0.0058 0.0029
2 0 0.2359 0 0.0120 0
60% 0.0007 0.0194 0.0007 0.0040 0.0027
3 0 0.3796 0 0.0038 0
0.0001 0.0628 0.0001 0.0014 0.0007
4 0 0.5551 0 0.0002 0
0. 0.1418 0. 0. 0.
Normal 0 0.0002 0 0. 0
0. 0. 0.0043 0. 0.
1 0 0.0447 0. 0.0005 0
0 0.0008 0. 0. 0.
2 0 0.0460 0 0.0001 0
80% 0 0.0011 0 0.0001 0
3 0 0.3026 0 0.0002 0
0 0.0418 0 0. 0.
4 0 0.4446 0 0 0
0 0.173 0 0. 0.
Normal 0.0013 0 0.0003 0.0005 0
0. 0. 0. 0. 0.
1 0 0.0837 0 0.0139 0
0. 0.0019 0. 0.0004 0.0001
2 0 0.2135 0 0.0133 0
100% 0. 0.0188 0 0.0004 0.
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3 0 0.3440 0 0.0261 0.
0. 0.1559 0. 0.0003 0.
4 0 0.2125 0 0. 0
0 0.2605 0 0 0
Liquid-line restriction fault
Load Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Leak Valve Leak Restriction Foul Foul
Normal 0 0.0010 0 0 0
0.0008 0.0007 0.0015 0.0009 0.0004
1 0 0 0.0107 0 0
0 0 0.0054 0 0
2 0 0 0.0517 0 0
20% 0 0 0.0025 0 0
3 0 0 0.1318 0 0
0 0 0.0120 0 0
4 0 0 0.2728 0 0
0 0 0.0185 0 0
Normal 0 0 0 0 0
0 0 0.0035 0 0
1 0 0 0.0453 0 0
0. 0. 0.0199 0. 0.
2 0 0 0.1144 0 0
40% 0. 0. 0.0159 0. 0.
3 0 0 0.2264 0 0
0. 0. 0.0512 0 0
4 0 0 0.3884 0 0
0. 0. 0.0834 0. 0.
Normal 0 0.0039 0 0.0001 0
0.0001 0.0002 0.0055 0.0003 0.0001
1 0.0001 0 0.1175 0 0
0. 0. 0.0247 0. 0.
2 0 0 0.1911 0 0
60% 0. 0. 0.0324 0. 0.
3 0 0 0.1833 0 0
0. 0. 0.0034 0. 0.
4 0 0 0.4476 0 0
0. 0. 0.1179 0. 0.
Normal 0 0.0002 0 0 0
0. 0. 0.0043 0. 0.
1 0. 0 0.2369 0 0
0. 0. 0.0322 0. 0.
2 0 0 0.3390 0 0
80% 0. 0 0.0554 0 0
3 0 0 0.3362 0 0
0. 0. 0.0220 0. 0.
4 0 0 0.5134 0 0
0. 0. 0.1780 0. 0.
Normal 0 0.0011 0 0.0002 0.0005
0 0 0 0 0
1 0.0007 0 0.1834 0 0
0. 0. 0.0165 0 0
2 0.0001 0. 0.3195 0 0
100% 0. 0. 0.0256 0. 0.
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3 0 0 0.4360 0 0
0. 0. 0.0750 0. 0.
4 0 0 0.5160 0 0
0 0 0.2725 0 0
Condenser fouling fault
Load Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Leak Valve Leak Restriction Foul Foul
Normal 0 0 0 0 0
0.0008 0.0007 0.0015 0.0009 0.0004
1 0 0.0036 0 0.0085 0
0.0010 0.0010 0.0012 0.0016 0.0005
2 0 0 0 0.2660 0
20% 0.0007 0.0020 0.0001 0.0061 0.0010
3 0 0 0 0.3090 0
0.0001 0.0008 0 0.0060 0.0004
4 0 0 0 0.3874 0
0 0.0002 0 0.0121 0.0001
Normal 0 0 0 0 0
0 0 0.0035 0 0
1 0 0 0 0 0
0.0002 0.0002 0.0061 0.0004 0.0001
2 0 0 0 0.1459 0
40% 0.0006 0.0033 0.0002 0.0173 0.0011
3 0 0 0 0.3325 0
0.0001 0.0006 0 0.0264 0.0002
4 0 0 0 0.4713 0
0 0 0 0.0673 0
Normal 0 0.0039 0 0.0001 0
0.0001 0.0002 0.0055 0.0003 0.0001
1 0 0.0188 0 0.0597 0
0.0010 0.0067 0.0013 0.0160 0.0020
2 0 0 0 0.2499 0
60% 0.0001 0.0041 0 0.0332 0.0015
3 0 0 0 0.3925 0
0 0 0 0.0958 0
4 0 0 0 0.3925 0
0 0 0 0.9580 0
Normal 0 0 0 0 0
0 0 0.0043 0 0
1 0 0.0041 0 0.0216 0
0.0002 0.0007 0.0050 0.0018 0.0001
2 0 0 0 0.2959 0
80% 0 0.0037 0 0.0606 0.0008
3 0 0 0 0.4842 0
0 0 0 0.1513 0
4 0 0 0 0.6731 0
0 0 0 0.1944 0
Normal 0 0.0012 0 0.0002 0.0004
0 0 0 0 0
1 0 0.0094 0 0.0906 0
0 0.0187 0 0.0418 0.0036
2 0 0 0 0.2785 0
100% 0 0.0020 0 0.1188 0.0002
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3 0 0 0 0.4503 0
0 0.0003 0 0.0735 0
4 0 0 0 0.7896 0
0 0 0 0.2815 0
Evaporator fouling fault
Load Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Leak Valve Leak Restriction Foul Foul
Normal 0 0.0011 0 0 0
0.0008 0.0007 0.0015 0.0009 0.0004
1 0E-3 0.0550 E-3 0E-3 0.0300 E-3 | 0.3800 E-3
0.0007 0.0007 0.0015 0.0008 0.0007
2 0 0 0 0.0014 0.1890
20% 0.0007 0.0017 0.0004 0.0015 0.0028
3 0 0 0 0 0.3387
0.0006 0.0015 0.0002 0.0010 0.0035
4
Normal 0 0 0 0 0
0 0 0.0035 0 0
1 0 0 0 0 0.0064
0.0002 0.0003 0.0028 0.0004 0.0005
2 0 0 0 0 0.1535
40% 0.0002 0.0008 0.0006 0.0005 0.0028
3 0 0 0 0 0.4560
0.0002 0.0014 0.0001 0.0004 0.0247
4
Normal 0 0.0040 0 0.0001 0
0.0001 0.0002 0.0055 0.0003 0.0001
1 0 0.0001 0 0 0.1169
0.0003 0.0010 0.0011 0.0014 0.0039
2 0 0 0 0 0.3757
60% 0.0001 0.0013 0 0.0006 0.0353
3 0 0 0 0 0.4784
0.0001 0.0007 0 0.0002 0.0348
4
Normal 0 0 0 0 0
0 0 0.0043 0 0
1 0 0 0 0 0.0599
0 0.0002 0.0009 0.0001 0.0009
2 0 0 0 0 0.2675
80% 0 0 0 0 0.0145
3 0 0 0 0 0.4546
0 0.0001 0 0 0.0543
4
Normal 0. 0.0011 0 0.0003 0.0004
0 0. 0.0001 0.0001 0.0001
1 0 0 0 0 0.1947
0 0 0 0 0.3991
2 0 0.0001 0 0 0.0590
100% 0 0.0001 0 0 0.0590
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3 0 0 0 0 0.4173
0 0.0010 0 0.0005 0.0109

Appendix 4 Fault diagnosis distance method

Assume cis the largest expected magnitude of residuals and as shown in following figure,
F (c,c) and F,(—c,c) represent fault quadrant I and fault quadrant II respectively. P(x, y)

is a point in the double residual space.
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From this equation, it can be seen that given a constant magnitude of fault points a distance

ratio corresponds to a circle in a cluster of circles whose centers have the same y

coordinate, the constant magnitude of c.

Since ratio,,, is always less than 1, the magnitude of X coordinates of the center is larger

than ¢ and increases with increasing distance ratio, and the radius of the circles will increase

with increasing distance ratio but with the larger magnitude than the former.
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Appendix 5 Introduction of faults

The proper method for simulating operating faults in a system is a very important part of the
evaluation of any fault detection method. If the faults are simulated in a way which does not
accurately represent how a fault occurs it is not likely that the technique will make correct
decisions in a real operating situation. The methods for simulating faults in the test unit are

explained in this section.

Condenser fouling results in the loss of the ability to transfer heat from the condenser coil to
the surrounding air stream. It may occur in a few different ways. For instance, condenser
fouling might occur as a build-up of a "scale" on the condenser fins resulting from
substances in the air or rain such as dust, minerals, etc. This would result in an increased
resistance to heat transfer, but a negligible change in the mass flow of air across the coil.
Condenser fouling may also be the result of a build-up of debris on the face of the
condenser coil. This build-up will cause a net loss of condenser surface area available for
heat transfer and will reduce the total mass flow rate of air across the coil. For the research
performed in this thesis, the "area blockage" method was chosen for the simulation of

condenser fouling.

A blockage of air flow through the condenser coil may be uniform or non-uniform. For
example, if the coil is located on the ground, one might expect the fouling to be more severe
near the bottom of the coil than the top. However, it could be uniformly distributed
throughout the condenser coil since air is drawn through the coil at a uniform velocity. The
location of the coil fouling could change the effect of the fouling on the internal refrigerant
states in some condenser coils. The condenser coil on the test unit contains two parallel

condensing sections and a subcooling section as shown in Figure 1.

Fouling in the subcooling section of the coil, after the refrigerant has already condensed into
a liquid, could have a different effect on the refrigeration cycle than fouling in the
condensing section. Some initial studies have showed that it is difficult to detect a fouled
condenser if the fouling occurs only in the subcooling section of the coil. Possible future
work might investigate this effect more closely. The uniformly fouled approach was chosen

for the work in this thesis because it is the most likely type to occur and is the most easily
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repeatable and quantifiable. Uniform condenser fouling was introduced by blocking the
condenser coil with uniformly spaced, vertical strips of either paper or duct tape. The level

of fouling is expressed as a total % reduction in the surface area of the condenser coil.
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20

28
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Figure 1 Test unit condenser coil circuitry

Evaporator fouling is generally the result of a plugged air filter or a blocked return air vent.
Both of these cause a restriction in the air flow path, resulting in a decrease in the flow of air
over the evaporator coil. For tests which were performed before the air measurement
system was operational, evaporator fouling was simulated by partially blocking the air flow
upstream of the evaporator coil. By measuring the change in differential pressure across the
evaporator fan as a result of the blockage, a reduction in air flow rate was calculated from
the fan curve. Once the air measurement system was commissioned, evaporator fouling was
simulated by simply reducing the speed of the variable speed fan in the air measurement
circuit. The change in air flow was measured using the air flow measurement system.

Fouling in both cases is expressed as a % reduction from the nominal air flow rate.

A liquid line restriction can be caused by a plugged filter/dryer or some debris lodged in the
fixed orifice expansion device. In either case, it results in an increased pressure drop in the
liquid line. It was simulated in the experiments by partially closing a globe valve placed in

the liquid line. The level of fault is characterized by the following ratio:
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RestrictioLevekl 00%*% (1)

sys

where AP, is the pressure drop across the restriction valve and AP is the difference
between high side (condensing) and low side (evaporating) pressures in the system before a

restriction fault is introduced.

A compressor valve leakage is one cause of a reduction in the capacity of a compressor. It is
typically caused by slugs of liquid refrigerant which damage the suction valve in the
compressor, causing it to lose an effective seal. When this happens, some of the high
pressure refrigerant in the compression cylinder leaks back into the suction line across the
suction valve. This results in a reduction in the volumetric efficiency of the compressor. A
compressor valve leakage was simulated by opening a globe valve which allows gas from the
discharge line to recycle into the suction line. The % reduction in the net volumetric
efficiency of the compressor is calculated using the known compressor specifications, the
inlet refrigerant state, and the mass flow measurement as shown in Equations 2 and 3 below.
7, = Dol

m

ideal (2)

Mo =1V - P (3)

where Macmal s the measured mass flow rate of refrigerant from the compressor, # is the

rotational speed of the compressor, 1”is the volume displaced with each compressor cycle,

and p is the density of the inlet refrigerant.

Refrigerant leakage is simply the loss of refrigerant from the system. It was simulated by
discharging a fixed amount of refrigerant from the rooftop unit into a receiving vessel and
weighing the vessel before and after the discharge. The level of refrigerant leakage is

quantified as the % reduction in the total charge in the system.
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ABSTRACT

Although the statistical rule-based (SRB) fault detection and diagnosis FDD)
method developed by Rossi and Braun (1997) has good performance for individua faults,
it requires measurements over a wide range of conditions for training reference models.
The development of these models can be time consuming and costly. Furthermore, SRB
FDD methods can only handle individual faults. This report presents new methods that
reduce engineering and installed costs for FDD and handle multiple-simultaneous faults.
The methods were evaluated using both laboratory and field data.

Inspired by a mathematical formulation for a general FDD methodology, a
decoupling-based FDD approach was developed to handle multiple-simultaneous faults.
To decouple different faults, all faults are categorized according to two criteria:  scope of
the fault impact and fault cause. The fault impact scope separates faults into system-level
and component-level faults. The fault cause criterion classifies faults into service and
operational faults. After decoupling, features are identified that uniquely depend on each
fault. The other advantage of the mathematical formulation is that the previousy
developed SRB FDD method can be cast within the general mathematical framework,
which guides the improvement and provides a better understanding of the SRB FDD.

In the proposed FDD approach, normal operation models and virtua sensors play
a very important role. So, various models and virtual sensors are proposed to generate
decoupled features. Wherever possible, physical or gray-box models are proposed that
exploit manufacturers performance rating data and only require very limited
experimental or field data to train model parameters.

Finadly, three case studies are presented in this document. One case study
provides initial vaidation of the decoupling-based FDD approach using laboratory data
where single faults were artificially introduced into a 3ton Trane rooftop unit (RTU)

11
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with a fixed-orifice as the expansion device. The second case study demonstrates the
whole FDD methodology by artificialy introducing multiple-simultaneous faults into the
Purdue field emulation site, where a 5-ton York RTU with a TXV as the expansion

device is ingtalled. Finaly, the decoupling-based FDD approach was applied to
Cdliforniafield sites

12
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1 THE FAULT DETECTION AND DIAGNOSIS METHODOLOGY

One of the drawbacks of the SRB method presented by Ross and Braun (1997) is
that it can not handle multiple-smultaneous faults. From the control point of view,
decoupling is an efficient way to deal with complicated interactions among multiple
inputs and multiple outputs. From the mathematical point of view, transformation is the
key to decoupling a system. Section 1.1 first formulates the FDD methodology in a
mathematical way. And then, from a mathematical perspective, a decoupling-based FDD
scheme is proposed to dea with multiple-simultaneous faults efficiently. The
mathematical decoupling approach leads to infinite decoupling cases, but only those
which have physical meaning are practical for low-cost FDD use. To find the physical
decoupling, section 1.2 describes away to analyze the system from a component point of

view.

1.1 Mathematical Formulation of ModelBased FDD Problem

The (thermodynamic) states of a (RTU) system are functions of external driving
conditionsand various faults, asis shown in Figure 1-1. It is important for fault detection
and diagnosis (FDD) not to misinterpret variations in (thermodynamic) state-variables
caused by changes in the driving conditions for faults. If measurements are classified
directly, the classification has to be complicated to consider the effect of external driving
conditions. In order to smplify classification and improve overall FDD performance,
normal operation models are used to predict expected values for these measurements
under normal operation in terms of measured external driving conditions. For any steady-

state measurement, the difference between expected and actual measurement values

13
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(residuals) should have a zero mean when there are no faults (see Figure 12) and a
probability distribution that is a weak function of driving conditions but dominantly
dependent on faults.

Faults X
External l Measurements
Driving »  System
Conditions
Residual Y
Distribution
Norma +
— Operation —
Model Xpectations

Figure 1-1 System after being incorporated with a normal operation model
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Figure 1-2 2dimensional residual distribution when system is running in a fault mode
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So, the input-output relationship of the system after being incorporated with a

normal operation model can be described approximately as follows,

Y = F(X) (1-1
where,
éxll;l éyll;' éfl(xl’XZ’“"Xn)g
é u é u é 1
X:éle:l Y:éyZU and F(X):éfZ(Xl’X21“"Xn)a.
é: ée: u é : 1
e u e u e u
&l &Yml &f (X, X557+, %)

X isthefault vector with each entry x; representing a measure of the fault level for fault
I (for example x; could characterize the level of compressor valve leakage, say, 20%).
Y is the state variable residual vector, with each entry y. representing a particular state-
variable residual (for example vy, is discharge line temperature resdua DT, and its
value is temperature variation, say, 10 F). F(X) isanonlinear function vector with each
individual nonlinear function f,(x;,x,,:--,X,) defining the relationship between different

faults at different levels and the state-variable residuals Y . n is the number of fault types

considered, and m is the number of chosen state variables.

1.1.1 Fault Detection

Fault detection, which is to indicate whether the system is normal or not, can be
done by evaluating whether the resulting Y inequation (1-1) is zero or not in a statistical

sense.

1.1.1.1 Original SRB Fault Detection Classifier

Ross & Braun (1997) proposed a way to evaluate whether Y is zero indirectly by
evauating the overlap (see Figure 1-2) of the actua distribution and the expected
distribution of the residual(s). When the overlap of the actua distribution and the
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expected distribution of the residual(s) decreases to a preset value (the classification error
threshold), afault is considered to be at present.

The direct numerical integration of this overlap for high dimensiona (e.g., 7-
dimensiona for our case) probability distributions cannot be performed in real time on a
microprocessor. Therefore, Ross & Braun (1997) cleverly employed the concept of
Bayes classifier to obtain the analytical solution of overlap, also known as Bayes error
(Fukunaga, 1990).

The other merit of this classifier is that it cleverly converted the classification of

an individual observation Y among infinite predefined classes w,,w,,---w,,--- inversely
into identification of whether any class w;, deviating from the normal operation appears
using a series of observations Y,,Y,,---Y, with certain overlap and let the fault diagnosis

classifier separate different faults.

Since it is impracticable, if not impossible, to estimate the high-dimensional
covariance matrix of current operation online, an identical covariance matrix with that of
normal operation is assumed. However, if this assumption is not well grounded it may
undermine the fault detection performance, because the overlap is highly dependent on
the covariance matrix. It is redly difficult to evaluate the identical covariance matrix
assumption because a large data set is necessary to estimate a high-dimensional
covariance matrix at reasonable accuracy. However, it can be evaluated indirectly by
checking the variance of individual variables. According to the experimental data
collected by Breuker (1997),

1 Faults have significant impact on the variance of dtate variables. For example,
variances of subcooling, superheat and evaporating temperature increase when the
system has refrigerant leakage fault.

2. Different faults have different impacts. For example, refrigerant leakage has a

larger impact on the variance of subcooling than evaporator fouling.
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As aresult of these considerations, a new fault detection classifier, which does not
require a faulty operation covariance matrix, was developed and is described in the next

section.

1.1.1.2 Normalized Distance Fault Detection Classifier

The atached ASHRAE paper (Li & Braun, 2003) and Deliverables 2.1.3 & 2.1.4
(2002) present details of a normalized distance fault detection classifier that can be used
for both individual and multiple-simultaneous faults simply. The classifier evaluates the
following inequality.

wy:Normal

Y M) © @@ (1-2)

w,:Faulty

Y-M

)'S
normal normal

where (Y- M "HY-M,,,.) isthe normalized distance, (c?2)*{(1- a),m}

)'S
normal normal normal

is the threshold of normalized distance for normal operation, (c?)*{,} is the inverse of

the chi-sguare cumulative distribution function, a is the false dlarm rate, and m is the

degree of freedom or dimension which is equa to the number of chosen state variables.
Dueto modeling error M, ..., 1S not exactly zero, so equation (1-2) takes modeling error

into account to statistically evaluate whether Y is zero or not.
The above fault detection scheme can be illustrated using Figure 1-3. The residual

distribution of normal operation can be characterized in terms of the covariance matrix

S, oma @d mean vector M. and depicted in the residual space plane asin Figure 1-3.

normal normal

In the residual space plane, any operating states (points) outside the normal operating
region are classified as faulty while those inside the normal operation region are
classified as normal. The normal operating ellipse is the fault detection boundary.
Practically, norma operation information, such as the mean and covariance
matrix, is more accessible and more reliable, compared to faulty operation data. In
addition, this scheme is intuitive in that the opposite of normal operation is abnormal
operation. If the current operation point is not inside the normal operation region at a

certain confidence according to reliable prior information, it should be classified as faulty
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operation. Another advantage is that the fault detection decision is based on individual

points rather than on a distribution, so it is more computational efficient for online

application.
Residual-2
[ ]
°
@ [ @ e [} ®
° o © e o, e
¢ ° > Snormal .
° °® o i Residual-1

° ° Fault Detection
® Boundary
[}
® Normd ° R
Operation Region o * &

Figure 1-3 Fault detection classifier scheme for a 2-dimensional case

Although some quantitative fault diagnosis techniques can aso do fault detection
a the same time, implementing fault detection prior to attempting any diagnosis is

recommended for following reasons:

1. Fault detection is much easier than fault diagnosis and the probability for abnormal
operation is lower than norma operation. Therefore, advance fault detection would
save considerable computation by eliminating the costly fault diagnosis step under
normal operation.

2. Fault detection can take statistical analysis into account easily, which makes the
fault diagnosis method more flexible.

18
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1.1.2 Fault Diagnosis

Fault diagnosis, which entails the determination of the kind and location of the
detected fault from alist of possibilities, needs to use the resulting Y (knowns) to find the
causes X (unknowns) qualitatively or quantitatively. The nonlinear equation (1-1) can
not get unique solutions for X for agiven Y if m<n and may result in inconsistencies
if m>n, but it would not lose any generality to assume m=n.If F(X) isknown,
multiple-simultaneous fault diagnosis becomes easy. However, it is very difficult, if not
impossible, to find F(X). To simplify equation (1-1), the first two items of Maclaurin’s
series can be used to linearize the nonlinear equations.

TF

Y = F(0)+——(0)(X - 0)=JX 1-3
()+'nx()( ) (1-3
where,

e, W, . Iu

g T ™G

. _ﬂF()_eﬂ I, Mg

FO)z0 == B ow

e oo

ALY L, 7

éﬂxl ﬂxz ﬂxng

is the Jacobian matrix of F(X) evaluated at 0. Compared to F(X), Jis much easier to

estimate by experiment, which requires n? tests. After Jis estimated, diagnosis can be
done more easily by,
X=J (1-4)
It should be pointed out that a nonsingular matrix J is a necessary and sufficient
condition for the above equation. For a practical engineering problem, this condition is
readily guarantied if the given set of state variables Y can be used to uniquely describe
the system under the possible fault vector X . It is not difficult at al to find such a set of
state variables Y with the help of physical knowledge.
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1.1.2.1 Original SRB Fault Diagnosis Method

Although J can be estimated approximately by experiment, it is still not generic
because different units of the same type may have different values of J. Estimation of
J for individual systems is only practical for large or critica systems. Instead of
estimating J , the rule-based FDD method proposed by Ross and Braun is equivalent to

using thesign of J to do fault diagnosis,

&t 1f; T, 0

Ca o LK

ﬂxl 1-[XZ ﬂxn l]?

- CGw, w o wg
JSig”:sgn(J):sgnggﬂ& T, fx, U
gé: : T : l:l_

e, 1O

& T, X, bz
If faults occur individually, for example, only individual fault i happens at some

time and
¢ U

Xsign = Slgn(X) = sgnge& u

Ge.

and then

Yoon = Juan Xy sgneﬂxu

sign sign/sign

So, if a fault happens individualy, for a given matrix J is determined

sign? 5|gn

uniquely by X, and vice versa Inversaly, this can be used to do fault diagnosis by

sign

comparing Y, with the column of J_. in the statistical sense or mathematically by,

sign sign
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& énuo
g e u:
Xgon = SONgJ g Yagn - €. U 1-
sign g (; sign  'sign gl;l_ ( 5)
é e u-
&0y

By determining which entry of vector X, is 1, the fault diagnosis classifier can

sign
make a decision. The advantages of this method are that:

1 Itisvey easy to infer the J_ . accurately by n simple tests or from experience,

sign
compared to n® well- designed tests to estimate J roughly.
2. Although this method is derived from a linearization operation and driving

condition-independence assumption, it applies without these two assumptions.

Actually there is no linearization approximation necessary for thesign of Jg.

3 J,, isgeneric a least for the same type of system, compared to different J’sfor

sign
different systems.

4. This diagnosis method cleverly uses direction change pattern (sign) to convert an
infinite classfication problem (infinite number of fault levels for an individua type

of fault) into a multiple classification one.

The drawback is that it can only handle individual faults.

It also should be pointed out that the above deduction only involves a matrix
transposition operation instead of a matrix inverse operation, so the conclusion can be
obtained without the assumption of m=n. This is because the SRB fault diagnosis
method uses “sign” to do fault diagnosis qualitatively instead of quantitatively. The
“possible inconsistencies’ in the case of m>n are impossible. Mathematically the
maximum number of faults can be diagnosed by m state variablesisup to n = 2", which
can be either larger or smaler than m. Practically, in order to simplify the process of
extracting rules, more state variables (m > n) are often adopted. For example, Ross and

Braun (1997) use seven state variables to deal with five faults.
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Corresponding to the SRB fault diagnosis terminology, J.., IS equivaent to the

sign
fault diagnosis rules (see Table 1-1), which are expressed as positive and negative
changes in residuals, so that each fault type corresponds to a unique quadrant of a multi-
dimensional residual space. To decide which fault is the most probable is equivaent to
identifying which quadrant the current measurement belongs to. Combined with the
normal operating ellipse, coordinate axes form the fault diagnosis boundary (see Figure
1-4).

Table 1-1 Fault diagnosis rules

Fault type Toep | Ton | Tond | Tee | Tig | DTea | DT,
Refrigerant leakage - + - - +
Comp. Valve Leak +
Liquid Restriction - + - + +
Condenser Fouling + - + - + +
Evaporator Fouling - - - - - - +
° Fault diagnosis
Boundary
e e
Norma o e © e o
Operation Region_  ® A

Y1

Fault Detection

Boundary
° e ©
@

Fault diagnosis
Boundary

Figure 1-4 Fault detection and diagnosis boundaries

There are many good classifiers in the literature to handle finite classes
(especialy two classes) with regular patterns, which can be parameterized using

covariance matrix and mean vector. However, for this problem, boundaries of each class
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or pattern are coordinate axes, and can not be parameterized using a covariance matrix
and mean vector. So, a fault diagnosis classifier to redlize this diagnosis method is the
key.

1.1.2.1.1 Original SRB Fault Diagnosis Classifier

Similar to the fault detection classifier, Ross & Braun (1997) proposed a fault
diagnosis classifier that involves evaluating the probability of the current distribution
within each fault quadrant. When the probability of the most likely fault class exceeds
that of the second most likely class by a preset threshold (fault probability ratio threshold),
adiagnosisis made.

The merit of this classifier is that it maintains the SRB fault diagnosis method's
merit, converting an infinite classification problem into a multi-classification one.
However, smilar to the fault detection classifier, direct numerical integration d the high
dimensiona (e.g., 7-dimensional for this case) probability distributions cannot be
performed in real time using a microprocessor. However, unlike the detection classifier, it
is impossible to find an analytical solution. Therefore, Ross & Braun (1997) made an
assumption that each dimension of the Zdimensional density function is independent. In
other words, the cross terms of the current operation covariance matrix are removed. This
assumption simplified the 7-dimensiona integration into a multiplication of seven 1-
dimensional integrations.

However, experimental data show that the covariance matrix in normal operation
is far from diagonal. The impact of the independence assumption on FDD performance
was evaluated through comparison with a classifier that utilizes Monte-Carlo simulation
and was shown to degrade fault diagnosis sensitivity. The results of this analysis appear
in the attached ASHRAE paper (Li & Braun, 2003) and Deliverable 2.1.3 & 2.1.4(2002).

1.1.2.1.2 Simple Distance Fault Diagnosis Classifier

To diminate the independence assumption and improve fault diagnosis

performance, a simple distance fault diagnosis classifier, which does not require
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integration of the probability distributions, was developed and validated (see the attached
ASHRAE paper (Li & Braun, 2003)). The performance of the method is good (good
sensitivity for detecting/diagnosing faults) and is relatively insensitive to the choice of

parameters and different operating conditions over a wide range (Li & Braun, 2003).

1.1.2.2 Decoupling-Based Fault Diagnosis Method

In order to extend the easily-implemented SRB fault diagnosis idea to handle

multiple-simultaneous faults, equation (1-3) can be further transformed as follows,

PY = PJX
§|1X18
z:Lx:g 22l
¢ i
3
n“nlU

where

—
1
5
(&
11
D: DD D DD
N
ococ\o\no\noncr

=}

Z = PY isthe transformed feature vector, and P =LJ " isthe transformation matrix to
make L diagona. There exists infinite number of transformation combinations of L , P
and Z by arbitrarily choosing a diagonal L if matrix J is non-singular (this can be
guaranteed by proper choice of Y physicaly). This transformation decouples interactions
among the different faults and makes each entry of the feature vector Z only correspond

to unique fault entries of the fault vector X and vice versa

u
u
u
u
U (1-6)
U
u
u
g
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To diminate impacts of the linearization operation and driving-condition-
independence assumption on diagnosis, the Sgnum operation is applied to both sides of
equation (1-6). Since Z, based on actual measurement or virtual estimate, is corrupted by
measurement noise, system disturbance and modeling error, it should be statistically
evauated by the signum operation. So, the n- dimensonal FDD problem has been
decoupled to be n 1- dimensional SRB FDD problems.

sign(X) =sign(L ")sign_ stat(2)

where, sign_ stat(z) isasignum operation in a statistical sense, such that

i-1 if (z<-cs))
sgn_ stat(z):% 0, if (4<cs,)
{1 if (z>cs )

where, cisaconstant, say, 3.

ésign_stat(zl)g

s son(,) ¢
gsgn stat(z)l,J

Kegn = € sgn(l ,) U 1-7)
g u

eS|gn stat(z )u
é sign(l ) Q

Equation (1-7) can be easily used to do multiple-simultaneous fault diagnosis.
Although the impacts of the linearization operation and driving-condition-independence
assumption on diagnosis are eliminated and multiple-simultaneous faults diagnosis can be
handled, P and Z dependon J. If Jis not known, P and Z can not be determined
mathematically. Since there exists infinite number of transformation combinations of L ,
P and Z, from the mathematical viewpoint, it can be supposed without proof that there
exists at least one Z which has physical meaning. So, if some Z can be found physically
or empirically, the sign of L can aso be decided empiricaly. Consequently, the
methodology to physically find the decoupled feature vector Z becomes the key point of
this approach, which will be discussed in next section 1.2.

In addition to the previous advantages listed for the SRB fault diagnosis method,

the decoupling-based diagnosis method:
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1 Simplifies fault detection from a high-D problem to n 1-D ones. Equation (1-2)

boils down to following n 1-D equations,

1(z - normal ? 2\1
sign_stat(z]) = i( : ST’ ) > (c ) {a- a),J}% (1-8A)
i,normal
or
_ !'|Z| - rn,normal > Nl{(l- a),O,l}y (1'88)
) S i,normal b

where, i =1,2,---,n.

2. Automatically achieves fault diagnosis without any extra computation immediately
after fault detection is finished, because equations (1-8) have obtained what
equation (1-7) needs. So the fault diagnosis classifier is not required.

 _sign_dtat(z) _ sign(z,)sign _stat(|z,|)
heon sgn(l ;) sgn(l ;)

3. Overcomes the drawback of the SRB diagnosis method and handles multiple-

= dign_stat(|z)

simultaneous faults diagnosis.
4. Becomes more generic and system-independent and does not require complicated
rules, which depend on the system.

1.1.2.3 Unilateral Decoupling Case

The above methodology based on full decoupling can handle multiple-
simultaneous faults easily, but the criterion of full decoupling is not a necessary condition
and can be lowered. To lower the full decoupling criterion has practical application.
Although a physically decoupled feature vector Z can be found for a fault vector X,
some features may be too expensive to be used for a non-critical FDD application. For
example, condenser air flow rate, which is independent of any other faults, could be the
decoupled feature for condenser fouling, but its measurement is too expensive. An
alternative way to obtain this kind of feature isto estimate it using a virtual sensor, which

may be corrupted by other faults. In other words, although fault i may not impact other
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faults' features z;’s (j * i), its feature z would be contaminated by another fault |

(j*i). For example, the condenser air flow rate can be estimated from an energy

balance with refrigerant mass flow rate estimated from a compressor performance map.
However, the air flow rate estimate can be corrupted by a compressor valve leakage faullt.

Therefore, only the coupling from i to j isbroken whilethe onefrom j to i isnot. The

worse case which can be handled is described in equation (1-9), in which the feature z

would be impacted by faults j’s(<i) but not by those (> ).

d. Uex, u
ue, u
g | e, U
z=1x =62 'z @ (1-9
€: : .. we: u
g, | | 8%, 0
nl n2 nnLEXnU

A sequential FDD method, which is contrasted with the above simultaneous FDD

technique, can be used to solve this case.

Step 1 Do FDD on fault 1. Because feature z, is independent of any other faults, fault

1 can be detected and diagnosed independently. If fault 1 does not exist, go 1 the
next step. Otherwise, don't go to the next step until ether fault 1 is fixed if it is
severe enough or the features, which have been corrupted by this fault, are modified

according to this diagnosed fault in the virtua sensor.

_sign _stat(z)
Lsign sgn(l,)

Step 2 Do FDD on fault 2. After step 1 has been done, either x; =0 (if fault 1 does

z =l P X :i P
|11

not exist or is fixed) or |,, =0 (after modification according to fault 1) can be

guarantied. So,
3 3 _z _Sign_stat(z,)
Z, = I21X1 +|22X2 _|22X2 p X, = é P X2,sign _lez)z
If it exists, fix fault 2 if it is severe enough, or otherwise modify the infected

features.
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Step i Do FDD on fault i. After steps 1,2,---,i - 1 have been done, eitherx, =0 or

l., =0 (for k <i)isguarantied.

sgn_stat(z)
z =1 X X+, Hox =hx, P T ——
i i1 i27%2 XI ,Sig Slgn(|“)
If it exists, fix fault i if it is severe enough, or otherwise modify the infected

features.

Step n Do FDD on fault n. After steps 1,2,---,n- 1 have been done, either x, =0 or
|, =0 (for k <n)isguarantied.

sign_stat(z,)
Z, :|n1X1 +Ii2X2+'”"+|nan :|nnxn P Xn,sign :W

Fix fault n, if it exists and is severe enough.

1.2 Strategy for Decoupling Rooftop Unit System

The approach proposed in the previous section is based on decoupled features.
Mathematically, there exists an infinite number of decoupled features, but for HVAC
systems only those with intuitive physical meaning and those that are readily available
(low-cost) are practical. This section develops a methodology or guidelines to find these
kinds of features.

Philosophically, any problem could be approached microscopicaly or
macroscopicaly or both to obtain required results with different details. A macroscopic
approach uses external and overal information to interpret the observed phenomenon or
predict a coming phenomenon, while a microscopic approach uses interna and
component information to interpret or predict the phenomenon. In some situations, a
macroscopic approach is preferred and unnecessary details are often ignored to smplify a
complicated problem to be a manageable one at the cost of losing some information. For

example, statistical thermodynamics considers physical models at the level of particles
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while classica thermodynamics focuses on macroscopic and overall behavior of the
particle system. FDD is not an exception. The original SRB method approaches the FDD
problem from the overall system point of view. It considers the thermodynamic impact of
different faults on overall system state variables, and uses models to predict normal
operation state variables according to the overall system driving conditions, and then
statistically evaluates the overall system state residuas to do FDD. The merit of this
method is that it is simple and systematic, while the drawback is that it has difficulty in
handling multiple-simultaneous faults and also depends on components which constitute
the system. Multiple-simultaneous faults have almost infinite combinations with different
fault types and levels and each combination has an overall impact on the overall system
behavior. So it is amost impossible to extract so many system-level rules to do FDD with
multiple-simultaneous faults. In addition, system-level rules depend on the composition
or structure of the system. So these two drawbacks are inherent. To overcome these two
drawbacks, an approach is developed that is based on individua components, which leads
to identification of decoupled features.

1.2.1 Taxonomy of Faults

Taxonomy aways is based on and also conversdy contributes to the
understanding of a subject. For the SRB FDD method, &l the faults are treated equally
and only the overall impacts of them on the overall system state variables are
discriminated. For example, from the macroscopic and overall system point of view, the
only discrimination among the 7 faults of refrigerant leakage, compressor valve leakage,
condenser fouling, evaporator fouling, liquid-line restriction, refrigerant overcharge and
non-condensable gas is the directional change of the overal system state variables
residuals. However, from microscopic and macroscopic points of view, the seven faults
can be divided into two classes. component-level and system-level faults, which are
shown in Figure 1-5. If classified from the view of fault cause, they can be divided into:

operational and service faults.
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ROOFTOP UNIT FAULTS

[l

(OPERATIONAL FAULTS

Figure 1-5 Taxonomy of Rooftop Faults

SYSTEM-LEVEL FAULTS

Compressor valve leakage is a component-level and operational fault. Although it
impacts the overall system performance such as discharge temperature and condensing
temperature, these impacts are indirectly related to a compressor volumetric efficiency
reduction, which is directly impacted by valve leakage. A loss of compressor volumetric
efficiency results in the reduction of refrigerant flow rate and increasing power
consumption per refrigerant flow rate and discharge pressure and temperature, and other
changes of system variables, whose direction and intensity depend on the expansion
device used. Physically, this source impact can be confined to the compressor component.
Since a compressor valve is normally damaged when the system is running, it is
classified to be an operational fault.

Condenser fouling is also a component-level fault. For a rooftop unit, a direct

impact of condenser fouling is the reduction of condenser air flow rate. A reduction of
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condenser air flow rate results in a heat transfer penalty that causes changes in state
variables, whose direction and intensity depend on the expansion device used. For
example, evaporator temperature would increase significantly for fixed orifice systems
but it would be unchanged for a TXV system until the fouling became very. A condenser
fouling fault develops dowly when the system is running, so it is classified to be an
operational fault.

Similar to condenser fouling, evaporator filter and/or coil fouling is a component-
level fault. For a rooftop unit, a direct impact of evaporator fouling is the reduction of
evaporator air flow rate. The reduction of evaporator air flow rate results in poorer heat
transfer performance and causes changes of state variables, whose direction and intensity
also depend on the expansion device used. For example, condenser temperature would
decrease significantly for fixed orifice systems but it would be unchanged for a TXV
system until the fouling became severe level. Evaporator fouling is classified as an
operational fault.

A liquid-line restriction fault often occurs in a dryer or a filter and can be
classified as a component-level fault. This fault has a direct impact of increasing the
pressure and possibly temperature difference between the inlet and outlet of the dryer or
filter. The increased pressure drop aso results in a series of changes in state variables,
whose direction and intensity are highly dependent on the expansion device used. For
example, for a system with a fixed orifice as the expansion device, a liquid-line
restriction will result in a significant reduction of refrigerant flow rate, while a moderate
liquid-line restriction will not result in noticeable reduction of refrigerant flow rate when
a TXV is used as the expansion device. This is because a TXV, an automatic control
device, can compensate for an increased pressure drop resulting from a liquid-line
restriction by increasing the opening of the TXV. Filter-driers continuously absorb water
and dirt and become restricted over time, so a liquid line restriction fault is classified as
an operational fault.

Low or high refrigerant charge is a system-level fault because it can occur
anywhere and its direct impact cannot be confined to a particular location. Refrigerant

overcharge only happens during service, so it is a service fault. Low refrigerant charge
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has two possible causes: refrigerant is undercharged when service was done or there is a
refrigerant leakage. Therefore, low charge can be a system-level operationa or service
fault.

Since the rooftop unit is under positive gage pressure system when charged, non
condensable gases can only be introduced during service. Non-condensable gases tend to
accumulate in the condenser. Its primary impact is to increase heat transfer resistance and
results in high condensing pressures and temperatures. So, non-condensable gas is
considered to be a component-level service fault.

In summary, the characteristic of a component-level fault is that its source impact
is confined to a specific location or component and all the other impacts on the system
originate from this source impact. On the contrary, the source impact of a system-level
fault cannot be confined to a specific location or component. Operational faults usually
develop through running and occur randomly or gradualy, while service faults are

introduced with service.

1.2.2 Interactions

As depicted in Figure 1-6, a rooftop unit can be represented as a black-box, which

is driven by faults, disturbances and overal system driving conditions, including T

aoc !

T. ,and f

aie asie» @nd outputs overall system state variables. It is difficult to tell which
factors contribute to the current operation state directly from overal state variables. The
SRB method uses normal state models to predict the normal operation states according to
the overal driving conditions and generates residuals to decouple the interactions
between driving conditions and faults, and further uses statistical analysis to further
decouple the actions from disturbances, but leaves the couplings among the different
faults untouched. This is the reason why the SRB FDD methods cannot handle multiple-

simultaneous faults.
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To handle multiple-simultaneous faults, the interactions among different faults
should be decoupled. That is, if one independent feature, which is impacted only by one
fault, can be found for each individua fault, then multiple-simultaneous faults are
decoupled. For a linear system or some special nonlinear systems, a transformation can
be found to diagonalize a transfer function matrix to decouple the system if a detailed
system physical modd is available. However, to obtain such a detailed physica model
taking faults into account for a rooftop unit system is extremely difficult. Even so, an
objective is to decouple the interactions between faults. Another way to decouple the
system is to unfold the black-box representing the rooftop unit system to view it from a
microscopic point of view and find some independent features with physical meaning for
component-level faults, and isolate service faults from operation faults immediately after
service is done and when the system stops. There is an important and practical restriction
for the independence features. They should be able to be expressed as functions of low-

cost measurements such as temperature and pressure.

Overall Driving Conditions Rooftop Unit System
Tooe Taier

aie’ ' aie
Compressor Valve
Leakage 3

C00CDPOGCEDNOCEDNIOCEDNPOCEDNPOOCEDNPNOCETDNINOCOCEDNPOCOEDINOYY, Tevap\

Reaction Tsh

Low Refrigerant Charge

—

mca hg
Condenser Fouling Condenser |——— T
Reaction & ! cond
Refrigerant Overcharge < >
DP, Te

Liquid-Line Restriction .
Reaction

DT,
Non-Condensable Gas

m

ea

DT,

Evaporator Fouling Evaporator |

Overdl System State Variables

Reaction <
° DF)Il J

Disturbances

Figure 1-6 Interactions of Rooftop Unit System
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1.2.3 Decoupling of Component Faults

In section 1.2.1, rooftop unit faults were divided into two classes according to two
different criteriaz component-level or system-level faults according to fault impact scope,
and service or operational faults according to fault cause criterion. The characteristic of
component-level faults is that their source impact can be confined to a component and
this source impact is independent of other faults locally. So, the independence features
for individual component-level faults can be found by investigating their source impacts.
The independence features for service faults can be found by investigating their impact

when the system stops.

1.2.3.1 Compressor Valve Leakage Fault

A compressor pumps a certain flow rate of refrigerant with certain
thermodynamic state to the whole system. At steady state, the compressor is mainly

driven by three conditions. any two independent thermodynamic parameters of the

compressor inlet conditions, say pressure P,. and temperature T,

suc ?

and compressor
outlet pressure P,. . These three driving conditions determine all the outlet
thermodynamic parameters and refrigerant mass flow rate m, . For a certain set of

driving conditions. P.

suc ?

T, ad P,

is?

Tyis, pred — ref (Pyiss Nyis pred ) (1-10

hdis, pred(Psuc’Tsuc ) I:’dis) = hsuc(Psuc ’Tsuc) + Wpred (Psuc 1Tsuc’ Pdis) - Qloss (1' 11)

where,

W, s (Poes Toer Piis
Wpred (Psuc ’Tsuc’ Pdis) == ik ( = ‘ )
mref ,pred (Psuc 'Tsuc’ Pdis)

is the compressar specific power consumption, h

sis.pred 1S the predicted discharge line
refrigerant enthalpy, T, is discharge line temperature, h_,_ is suction line refrigerant

enthalpy.
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When a compressor valve has leakage, the compressor volumetric efficiency

h, decreases compared to the given set of driving conditions. The decrease of volumetric
efficiency h, causes the refrigerant mass flow rate m,, to decrease compared to the

normal value for the given set of driving conditions. Although the power consumption
W may increase or decrease, W, power consumption per mass flow rate, would increase

compared to the normal \alue. As a result, the compressor discharge line enthalpy hy.

would increase significantly. Since, a a given pressure P,., the discharge line

is 1
temperature T, monotonically increaseswith h,, the discharge line temperature would
increase significantly due to a compressor valve leakage fault.

Using a compressor map, W, (Py,, T,

suc’?

Pss) can be predicted and then T o

can be calculated. Using this model, te residua DT, between predicted T, .., and

is, pr

measured T

dis,meas

would be a function of compressor valve leakage independent of
operating conditions and faults in other components. Figure 1-7 shows the decoupling
scheme. It can be seen that the residual DT, is only impacted by compressor faults and
al the other factors including other component faults and overal system driving

conditions have been taken into account by P, T, and Pj,.

c !

Compressor s :
Valve i 3
L eakage E
Fault 3
PSJC’TSUC’PdiS Ty E

X+ DTy,
— A =

Other Faults

T,

N s mEiEE ARSI EE AN EE I AN AR I EE I EESEESEEIEE I EE I EESEEsEEsEEEEEC

is, predE

Figure 1-7 Compressor Valve Leakage Decoupling Scheme
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1.2.3.2 Condenser-Related Faults

Usually, one component-level fault corresponds to one component, so the
decoupling can easily be achieved. However, it is possible for one component to have
more than one component-level fault. The condenser is such a case. There are two
possible component-level faults related to condensers: non-condensable gas and
condenser fouling faults. Although the SRB method can handle low-dimensiona cases
such as 2D without decoupling, it is till advisable to find an independence feature to
further decouple them. Fortunately, these two condenser-related faults can be decoupled
further.

1.2.3.2.1 Non-Condensable Gas Fault

As discussed in section 12.1, a non-condensable gas fault is not only a
component-level fault but also a service fault and can only be introduced through service.
In addition, its impact influences not only the performance of a running system but aso
the state of a stopped system. When a system is stopped, the non-condensable gas tends
to accumulate in the condenser (it can possibly to accumulate in other components such
as evaporator, but this will not impact final the result). The non-condensable gas fault can
be detected and diagnosed immediately after the service was done and the system is
stopped. For a given system, the condenser pressure at any point can be related to the

compressor discharge according to

cond —

15
Pow = Pic- Gz(ﬁofvdx+v2 - V) (1-12)
0

where P

cond

and P, are condenser pressure and discharge line pressure, G is mass flux,
D istube diameter, f is Darcy friction factor, L is tube length, and v, v, and v, are

specific volume.
After the system stops, it will take some time for the system to balance high-side
and low-side pressures. During pressure balancing, the flow rate is quite small (G » 0)

SO,
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L

1
P,y = P.- 0° (5 Ofvdx+v, - v;) =Py,
0

cond

After the system stops, at least one of the condenser and evaporator coils will be
filled with two-phase refrigerant and the refrigerant will not be subcooled anywhere. For
a TXV system, since the TXV has the ability to shut off the refrigerant flow when the
compressor stops, the refrigerant in both coils could remain in a two-phase condition. For
a fixed-orifice system, after the system has been off for a long time in the daytime, the
refrigerant in the condenser will normally be superheated. However, it takes some time
for the high and low sides to reach a balance and for the refrigerant to become
superheated. In addition, in the nighttime at many locations the outdoor temperature is
normally lower than the indoor temperature, so the refrigerant in the condenser will be
two-phase mixture when the system is off. Consequently, it is safe to assume that the
refrigerant in the condenser would be saturated at some time when the system is off and

the following derivation holds.
Tcond,pred = Tsat( Pcond) = Tsat (Pdis) (1' 13)

DT - Teat(Pys) =0 (1-14)

cond,norm

=T,

cond, meas

=T,

cond,meas

- T

cond,pred

However, when there is non-condensable gas in the system and according to

Dalton’slaw,
Pref vapor = I:)dis - I:)ncg = (l' yncg)Pdis’ yncg >>0 (1'15)
y — I:)ncg - Nncg - (Nncg/Nref ,total)
" I:)dis, Nncg + Nref vapor (Nncg / Nref ,total) + (Nref vapor /N ref ,total)
1
l+ (Nref ,vapor/Nref ,total)
(Nncg/Nref ,total)
1
l + Cref
rncg
where, Py .0 1S the refrigerant partial pressure, P, is non-condensable gas partial

pressure, Yy, ., is the mole fraction of non-condensable gas in the refrigerant vapor-gas
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mixture, ¢, is known as the quality or the mole fraction of vapor efrigerant in the

refrigerant liquid-vapor mixture, r., isthe mole ratio of non-condensable gas over total

g

refrigerant, and N N and N o ae the numbers of moles of non

ncg !’ ref - vapor

condensable gas, vapor refrigerant, and total refrigerant.
According to the Clapeyron equation,

dP h
(ﬁ)sat = %
fg
Tv o
P DT » DP

fg

where, h,, is the enthalpy of vaporization, v, is specific volume change, and T is
absolute temperature for vaporization. So, equation (1-14) can be modified to,

DTcond,abnorm = cond,meas Tcond,pred = cond,meas Tsat(Pdis)

= {Tcond,meas - Tsat (Pref ,vapor)} +{Tsat (Pref ,vapor) - Tsat (Pdis)}

= sat(Pref ,vapor) - Tsat(Pdis)
T, v

— cond,meas " fg
- (Pref,vapor - I:)dis) h

fg

P,V
:_(1_ yncg) dis ng

cond,meas
hyg

T

cond,meas)v fg
T

1_ yncg hfg cond,meas *
-r P (T, )\

- ncg ' ref ,vapor \ ' cond,meas/ " fg T

C e h

(1-16)

fg

Pref ,vapor (Tcond,meas )Vfg

h

For an air conditioning application, can be approximated as

fg

a constant, 0.125, and if the Celsius scale is used, equation (1-16) can be reduced to be,

"
DT = C”°9 (0.125)(273.15+T,

cond,abnorm — cond,meas)
ref

I
= (- C”Cg )(34.14 +0.125T,

cond, meas)
ref
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r
<-34142-C (1-17)
C ref

DT,

cond,abnorm

Suppose that there is 1% (in mole sense) non-condensable gas in the whole
system, and refrigerant quality is 0.03

ncg

(=% ad c, =005
99

then,
1 1
= = 0.17
Yoy = ¢ 0.05
1+ 1+ —
r 1/99

ncg
It is obvious that athough the mole fraction of the non-condensable gas in the

whole system is very smal, say 1%, the refrigerant partial pressure P is

ref vapor

considerably less than the total pressure P, (83%). According to equation (1-17),

DT,

cond,abnorm

,
<-3414-" =- 34.14% =-6.90 °‘C=-1241 F

Cref

So, DT,

cond,abnorm

Is a very sensitive FDD feature. From equation (1-17), it is

obvious that DT, .m0rm 1S INVersely dependent on the refrigerant quality, ¢, . If the

refrigerant quality approaches to 1, the sensitivity would be low. However, the high
quality case is not possible when the system is stopped and immediately after the service.
Table 1-2 lists the refrigerant quality at different ambient temperature for a 3-ton rooftop
unit with the compressor off and nominal charge. From Table 1-2, it can be seen that
refrigerant quality is very low when the system is stopped and fully charged, so the

sensitivity would be very high.

Table 1-2 ¢, and DT

cond,abnorm

with compressor off and nominal charge and 1% nor+

condensable gas
T,..(C) 20 30 40 30
Cy 0.031 0.040 0.032 0.063
DT ond.abnorm( C) -11.12 -8.62 -6.63 -3.31
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Table 1-3 also lists the refrigerant quality for different refrigerant charge levels
with an ambient temperature of 30°C. From Table 1-3, it can be seen that refrigerant
overcharge would raise the non-condensable FDD sensitivity, whereas refrigerant
undercharge would reduce the non-condensable FDD sensitivity. Even at an unrealistic

worst case of 20% of nomina charge, this feature would provide sufficient FDD
sensitivity.

Table 1-3 ¢ and DT, 4 .pnorm With compressor off and ambient temperature=30°C and

1% non-condensable gas
Charge Level 20 40% 60% 80% 90% 100% 110% 120% 140%
C 0.384 0.169 0.098 0.062 0.030 0.040 0.033 0.026 0.016

DTgamam('C)  -0.00 204 -332 -336 -690 -862 -10.3 -13.3 -216

In summary, athough refrigerant charge has some influence on the sensitivity of

DT ona.aonorm 10 detect and diagnose a non-condensable gas fault, the influence would not

change the fault pattern and the sengitivity is high enough over a very large range of
ambient and charge conditions. So, the non-condensable gas fault could be detected and

diagnosed independently. In a broad sense, DT, .nom COUld be considered as an

independent feature to detect and diagnose a non-condensable gas fault and the coupling
between non-condensable gas fault and condenser fouling can be broken when the system
stops. Since it is not a rea decoupling, it is termed pseudo-decoupling to distinguish it
from real decoupling.

1.2.3.2.2 Condenser Fouling Fault

A rooftop unit system typically uses a constant-speed fan to force ambient air to
cool condenser coils. Fouling mainly develops on the air side and affects heat transfer in
two ways. On the one hand, it increases the thermal resistance mainly by small-scale dirt
particles attached to the coils, and on the other hand, it reduces the air flow area by large-
scale dirt and results in a reduction of air flow rate. Since a rooftop air conditioner is

normally installed outside, there can be a lot of large-scale dirt such as paper and leaves.

40



41

Also, high velocity air makes it difficult for small-scale dirt to attach to the condenser
coils. Therefore, the condenser air flow rate reduction can be chosen as an independent

feature for condenser fouling. Applying the first thermodynamic law to the condenser,

rhcan,air (Taoc - Taic) = rhref (hdis(Pdis’Tdis) - hII (PII ’TII )) (1'18)
. = M (hdis(Pdis'Tdis) - hl (RI ’Tn)) (1_19)
Cp,air (Taoc - Taic)

where, m_, is condenser air mass flow rate, C__,, isair specific heat, T, is condenser

p.air

outlet air temperature, T, IS condenser inlet air temperature, m,, is refrigerant mass
flow rate, h, isdischarge line refrigerant enthalpy, P, isdischargeline pressure, T, is
discharge line temperature, h, is liquid line refrigerant enthalpy, and T, is the liquid

line temperature.

Normally the refrigerant is subcooled at the outlet of condenser. If it is not
subcooled, then a fault is most likely present, which the FDD system should detect and
diagnose. So, the enthapy h,(R,,T,) can be approximated by h,(P,.,T,) very

accurately.

mref (hdis(Pdis’Tdis) - hu (Pdis’TII))
m. . »
“ C Taoc - Taic)

(1-20)

p,air(
Since al the parameters on the right side of equation (1-20) are measured directly

or estimated from measurements by virtual sensors, equation (1-20) offers a virtual

sensor or observer for measured air mass flow rate m The normal model for m,,

would be constant value for a fixed-speed condenser fan. Practically, the normal value of
m., would be learned when the FDD scheme is implemented assuming that there is no
fouling.

In order to evauate refrigerant properties in equation (1-20), it is necessary that
there be no noncondensable gas in the system. This assumption is reasonable, because
the non-condensable gas fault can be excluded immediately after service is done. Figure

1-8 illustrates the decoupling scheme for condenser fouling and non-condensable gas

faults.
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Figure 1-8 Condenser Fouling and Norn-Condensable Gas Faults Decoupling Scheme

1.2.3.3 Liquid-line Restriction Fault

Because water dissolved in the refrigerant would result in clogging of the
expansion device and dirt such as carbon and rust in the system would wear the
compressor valve and cylinder, rooftop units usually include dryer/filters to absorb water
and filter the dirt. When the dryer/filter is saturated with too much water and dirt, it

would result in significant pressure loss and need to be replaced.

The source and direct impact of a restriction is significant pressure drop DR, , but
a temperature drop DT, is not a sufficient feature. Only when the restriction is large

enough to cause the refrigerant to change phase, would the temperature begin to drop.
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Figure 1-9 illustrates the liquid-line restriction on a P-h diagram. Normally the refrigerant
at the condenser outlet (3) has about 15 F subcooling. For the conditions of Figure 1-9,
the pressure drop resulting from a restriction would need to be larger than 49.2 psi for the
temperature to drop and 14.9 psi more pressure drop would cause a 5 F temperature drop.
Consequently, if temperature drop is used to do FDD, any restriction lower than 49.2 psi
is not detectable and to get 5 F temperature drop, a total pressure drop of 64.1 ps is
necessary. In addition, when there is a liquid-line restriction, the actual subcooling would
become even larger (say 20 F at 3') and more pressure drop (64.1 psi) is needed to trigger

the temperature drop.
R22
400 T T T T T T T T T T
300r / /
< 5 313 120 F
G CP=49.2psi / / / /
= ¥ v 3flash 105 F
o DP=14.9psi / I
X 100 F
2007 3'flash / / / /
0.2 0.4 0.6 0.8
150
70 90 110 130 150 170 190
h [Btu/lb,]

Figure 1-9 Liquid-line restriction illustration

It aso should be pointed out that a large restriction may be necessary to obtain a
phase change but once the phase change occurs the pressure drop rate would increase
significantly with the restriction size because two-phase flow is more sensitive to flow
area than pure liquid refrigerant flow. The dryer/filter with a restriction acts as an
expansion device, which can result in a significant pressure and temperature drop

between the inlet and outlet of the dryer/filter. Therefore, the temperature drop can serve
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as an independent feature only for very large liquid-line restriction faults. However, low-
cost is an advantage of using temperature drop as the feature.

To detect small liquid-line restriction faults, the pressure drop could be used.
However, pressure measurements are relatively expensive. Therefore, an approximate
scheme should be developed. Figure 1-10 illustrates the relevant components and state

variables.
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o
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Figure 1-10 Vapor Compression Cycle Illustration

Using the nomenclature defined in Figure 1-10, the pressure drop across the

filter/dryer is
DR, =Pk - P,

P, can be approximated very well by P, = Py (Toong) If Toong CaN be measured properly
because the condenser pressure drop resulting from liquid refrigerant flow is small (less
than 3 ps). The key point for this technique is placement of the condenser temperature
sensor, because a non-saturated temperature would result in large estimation error,
especidly if a superheated temperature were measured. A relatively safe approach is to

place the temperature sensor at the point where different condensing circuits are
combined, where the refrigerant is almost never superheated unless the refrigerant charge
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is extremely low. However, it is possible for the refrigerant at this point to have a small
degree of subcooling if there is a severe liquid line restriction or a refrigerant overcharge
fault. Even so, a small subcooling would not have a big impact. On the contrary, 2 F
subcooling would compensate for the error resulting from neglecting the pressure drop in
the liquid-line and condenser subcooling section. 4 F subcooling may result in around a-

3 psi error. Another more approximate approach to estimating P, is to assume constant

pressure drop across condenser, which may result ina +10 ps error.

An egtimate of P, can be obtained by modeling the expansion device. There are

rather mature techniques available for modeling fixed orifices including short tube and
capillary tube (see Appendix 1). For a TXV or EXV system, Appendix 1 develops a
practical and useful modeling approach to estimate the upstream pressure using factory
performance map data. The models for estimating pressures work as a virtual sensor for

pressure drop. The decoupling scheme is shown in Figure 1-11.

Liquid-Line Pl
Restriction
+ DPII,meas E
?
PS (Tcond ) . D2 P”
Constant

Other Faults 3
DR, »0 :

Figure 1-11 Liquid-Line Restriction Decoupling Scheme

1.2.3.4 Evaporator Fouling Fault

Similar to condenser fouling, evaporator or evaporator filter fouling also develops

on the air side and the dominant impact is a reduction of air flow rate. Therefore, the
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evaporator air flow rate reduction can be chosen as an independent feature for evaporator

fouling. Applying the first thermodynamic law to the evaporator,
mea (haie(Taie’f aie) - haoe(Taoe’f aoe)) = r.nref (hsuc(Psuc'Tsuc) - hII (PII ’TII )) (1'21)

- mref (hsuc(Psuc’Tsuc) - hII (PII ’TII ))

= (haie(Taie’f aie) - haoe (Taoe’f aoe))

where, m,, is evaporator air mass flow rate, h,, is the evaporator outlet air enthalpy,

(1-2)

f 0o 1S the relative humidity of evaporator outlet ar, T, is evaporator outlet air
temperature, h,, is evaporator air inlet enthalpy, T, is evaporator inlet air temperature,
f .o iStherelative humidity of evaporator inlet air,h,. is suction line refrigerant enthal py,
P, issuction line pressure, and T, is suction line temperature.

All the parameters on the right side of equation (1-22) are measured or estimated,

SO equation (1-22) is a virtua sensor or observer for measuring m Figure 1-12

ea,meas *

illustrates the above decoupling scheme.

Evaporator ]
Fouling : cmeas
Fault '

hII (Pdis’TII)
hsuc( Psuc’Tsuc)
Mg, Tooer T,

aoe’ 'aie’

aic

aie faie

— 4

Other Faults
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Figure 1-12 Evaporator Fouling Decoupling Scheme

Unlike conderser air mass flow rate, m,, ., normaly has more than one speed

setting, but it is constant for a given setting. So, the block ‘blower’ acts as a normal

model, whose input is the setting control signal and output is a constant air mass flow rate
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M, ,eq COrresponding to the speed setting. Practicaly, the actual vaue of m,, ., would

be learned when the FDD scheme is implemented with the assumption of no fouling.

1.2.3.5 Summary of Decoupling Component-Level Faults

After decoupling the 5 component-level faults in the previous sections, the

decoupling scheme for component faults can be summarized in Figure 1-13.

NonCond

cond

CondFoul >

Figure 1-13 Ideal Decoupling Scheme of Component-Level Faults with Refrigerant mass
flow measurement

From Figure 1-13, it can be seen that:
1 Immediately after system service has been done and when the system is stopped,
DT,

C

-nd 1S & pseudo-decoupling feature for non-condensable gas;

2. Dm_, isindependent of any faults except for condenser fouling, o it serves as a

ca

decoupling feature for condenser fouling;

3. Smilarto Dm

ca’

D, isthe decoupling feature for evaporator fouling;

4. DT, is only dependent on compressor valve leskage fault, so it can be used to

break the coupling from compressor valve leakage to any other faults;
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5. DP, deviates drasticaly from zero only when there is a restriction in the liquid-

lineand is a decoupling feature for liquid-line restriction.

In decoupling condenser fouling and evaporator fouling faults, a refrigerant mass

flow rate measurement m, is necessary. However, a mass flow rate meter is too

expensive for this application. So, the decoupling scheme shown in Figure 1-12 is called
ideal decoupling. An aternative way to obtain a refrigerant mass flow rate measurement
M,y IS to estimate it indirectly using compressor map data with some readily available
measurements. However, using a virtual sensor instead of a real sensor has a penalty.
Because the accuracy of real refrigerant mass flow rate measurement has nothing to do
with other faults such as a compressor leakage fault, an ideal decoupling among
component-level faults can be achieved if a real measurement is used. However, the
estimate from a virtual sensor is strongly dependent on the compressor performance. If
the compressor has a valve or other fault, the refrigerant mass flow rate could be
overestimated. Since condenser and evaporator air mass flow rates are also estimated by
virtual sensors, which use refrigerant mass flow rate as an input, overestimated
refrigerant mass flow rate would result in underestimated condenser and evaporator air
mass flow rate. Therefore, the couplings from compressor leakage to condenser and
evaporator fouling are not broken. In other words, use of a virtual sensor would result in
unilateral decoupling between a compressor leakage fault and condenser and evaporator
fouling faults.

Unlike control applications, in which bilateral decoupling is preferred, unilateral
decoupling is sufficient for an FDD application. Later sections will discuss how to do
FDD after decoupling. Figure 1-14 modifies the ideal decoupling scheme in Figure 1-13
to an actua decoupling scheme using a virtual sensor for refrigerant flow rate.
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NonCond

CondFoul

LL-Restr

Figure 1-14 Actua Decoupling Scheme of Component-Level Faults without Refrigerant
Mass Flow Measurement

1.2.4 Decoupling System-Level Faults

This section interprets relationships among the three system-level faults:
refrigerant overcharge, refrigerant undercharge and refrigerant leakage. Although these
three faults are system-level faults, from the classification criteria of fault cause,
refrigerant overcharge and undercharge faults are service faults while refrigerant leakage
is an operational fault. Service faults only happen during service and fault severity would
not change, while operational faults normally develop during operation and they would
deteriorate. This information contributes to the development of an FDD technique.

From the viewpoint of fault effect, refrigerant undercharge and refrigerant leakage
have the same fault effect on the system, low or deficient refrigerant charge, so they can
be considered as a single fault when doing fault detection and then can be separated using
the fault cause criteria when doing fault diagnosis. Physicaly, refrigerant deficient and
excessive charge faults would not happen simultaneously, so actually there is no coupling
among the three system-level faults at all from the sense of fault detection and it is pretty
easy to separate them using the fault cause criteria from the sense of fault diagnosis.

Figure 1-15 depicts the decoupling scheme for the system-level faults.

49



5C

RefOver DTsh— sc Tsh - TS(

@

£

% RefUnder Low System State

B < Refleak —| /Charge Wrong Residuals (SSR)
g Charge — Or

%

@

Figure 1-15 The Decoupling Scheme for System Level Faults

So far, couplings among system-level faults and from system-level faults to
component-level faults are broken. However, it is necessary to identify a feature that
strongly depends on charge.

Since component-level faults can be excluded before handling system-level faults,
the system-level faults can be diagnosed independently using the SRB method. However,
using the SRB method to do FDD requires system-level normal operation models, which

can be expensive to develop. Another lower-cost feature is the difference between suction

line superheat and liquid line subcooling, DT,

sh-sc *

Thisis a good feature for the following
reasons:

1 Most of the refrigerant charge (more than 80%) accumulates as liquid in the
condenser subcooling section and liquid line including the filter/drier. Subcooling
is provided by certain heat transfer area in condenser, so the volume of liquid
refrigerant is proportional to subcooling.

2. Similarly, superhest is provided by certain heat transfer area in evaporator and the
vapor volume is proportional to superheat. So the saturated liquid in the evaporator
isinversely proportional to superhest.

3. So the difference between superheat and subcooling should be inversdy
proportiona to refrigerant charge. From the SRB diagnosis rules for both fixed
orifice and TXV, it can be seen that the superheat and subcooling residuals change
in the same direction for all other faults and in counter directions only for
refrigerant charge faults.
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The penalty of using this low-cost feature is that it does not include the effects of
driving conditions. However, these effects are relatively small. Data collected by
Harms (2002) were used to vaidate this feature. Figure 1-16 shows that the difference
between superheat and subcooling is inversely proportional to refrigerant charge. The
different symbols represent different operating conditions. There is only very small
dependence on different operating conditions for these data because the system uses a
TXV, which compensates for variations in operating conditions. For a fixed orifice
system, this feature would work as well. Chapter 2 provides a case study for a system
having afixed orifice.
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Figure 1-16 DT, .. with different refrigerant charge levels

Since al the component -level faults can be independently detected and diagnosed,
their influence on detecting and diagnosing system-level faults can be eiminated if the
component-level faults are considered first. Similar to the unilateral decoupling between
non-condensable gas and condenser fouling faults, unilatera decoupling between
component-level and system-level faultsis also achieved.
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1.2.5 Summary of Decoupling Schemes for Rooftop Unit System Faults

So far, couplings among component-level faults, among system-level faults, and
from system-level to component-level faults have been broken fully or unilateraly.
Figure 1-17 summarizes the decoupling scheme for component and system level faults.
Equation (1-23) formulates the decoupling scheme and results of al the rooftop faults. It
can be seen that the matrix L of equation (1-23) is sparse and lower triangular. The
algorithm described in section 3.1.2.3 can solve this unilateral decoupled problem.

¢ NonCond DT ona
2]
E CondFoul Driv,,
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Figure 1-17 The Decoupling Scheme of All Rooftop System Faults
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2 CASE STUDIES

In order to validate the decoupling-based approach, three cases studies are
provided in this chapter. Section 21 presents an initial case study to validate the
decoupling scheme for a 3ton fixed orifice rooftop unit. Section 2.2 presents an FDD
demonstration of multiple-simultaneous faults for a 5ton TXV rooftop unit installed at
the Purdue field site. Section 2.3 provides results for Californiafield sites.

2.1 Case Study of Decoupling Rooftop Unit Faults

Data gathered by Breuker (1997) under controlled conditions in a laboratory were
used to evaluate the decoupling scheme for a system with a short-tube expansion device.
As described in Deliverables2.1.3 & 2.1.4, five types of individual faults were artificialy
introduced at different fault levels and the unit was tested at different load levels with the
unit cycling on and off. Although these five kinds of faults are individual instead of
multiple-simultaneous faults, they can be used to test whether the proposed decoupling

features for each fault are independent of fault and load levels and al other faults.

2.1.1 Compressor Valve Leakage

Figure 2-1 illustrates the discharge line temperature residuals for different fault
types with different fault and load levels obtained using predicted compressor power
consumption and predicted refrigerant mass flow rate. It can be seen that only the
compressor vave leakage fault has a significant influence on the discharge line
temperature residual. The small fluctuations with other faults are caused by measurement
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noise, system disturbances and modeling error. So, the coupling between compressor
valve leakage and other faults is broken successfully using the discharge line temperature
residual.

However, there is still some room for improvement. For example, the discharge
line temperature residual is impacted a little by large liquid-line restrictions. This may be
caused by high suction line superheat at severe liquid-line restrictions, which results in a
lower value of the compressor volumetric efficiency. However, this can be improved by
improving the compressor model performance and finding some practical means to tune
it, which will also eliminate the impact of other faults on the discharge line temperature
estimation.
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Figure 2-1 Decoupling compressor valve leakage fault using estimated compressor power
measurement and estimated refrigerant mass flow rate
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2.1.2 Condenser Fouling Decoupling

Figure 2-2 gives the condenser air mass flow rate estimated using a virtual sensor
under different fault types with different fault and load levels. In order to show the
potential of the decoupling scheme, this virtual sensor uses the actual refrigerant mass
flow rate measurement. From 2-2, it can be seen that the condenser air mass flow rate is
only influenced by the condenser fouling fault. The reduction of condenser air mass flow
rate is proportiona to the condenser fault level and independent of load levels and other

faults. So full decoupling between condenser fouling fault and other faults is achieved.
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Figure 2-2 Decoupling condenser fouling fault using measured refrigerant mass flow rate

A refrigerant mass flow rate meter is too expensive for this application, so it is
estimated using compressor map data. Figure 2-3 shows the condenser mass flow rate
estimated using a refrigerant mass flow rate estimate under different fault types with
different fault and load levels. It can be seen that the condenser mass flow rate estimate is
influenced simultaneously by condenser fouling and compressor valve leakage with
inverse directions. The dependence on compressor valve leakage is caused by errors in

refrigerant mass flow rate prediction, since the compressor map was built ing normal
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compressor data. When there is a compressor valve leakage fault, the compressor model
over-estimates the refrigerant mass flow rate and this results in an over-estimate of
condenser air mass flow rate. So, the coupling from compressor valve leakage to
condenser fouling is not broken if the refrigerant mass flow rate is estimated using the
compressor map. However, this would not impact the FDD application, because the
coupling from condenser fouling to compressor valve leakage has been broken aready.
In other words, unilateral or partial decoupling can be achieved even if refrigerant mass

flow rate is estimated using a compressor map.
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Figure 2-3 Decoupling condenser fouling fault using estimated refrigerant mass flow rate

2.1.3 Evaporator Fouling Decoupling

To quantify the fault levels simulated in this experiment, evaporator air mass flow
rate was indirectly calculated from the fan curve using the measurement of the change in
differential pressure across the evaporator fan. Figure 2-4 shows the evaporator air mass

flow rate measurements. From this figure, it can be seen that in addition to an outlier
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point the actual evaporator air mass flow rate has a small variation for different fault
types and different fault levels, and the fluctuation band shifts up with the increasing load
levels. The outlier point may be caused by experimental error. The small shifting
fluctuation with increasing load level may be caused by the variation in the air density at
different load levels, and different fault type and fault level also have some influence on

the air density. However, this small fluctuation would not change the decoupling feature.

Figure 2-4 Decoupling evaporator fouling fault using measured evaporator air mass flow
rate

Evaporator air mass flow rate is not typically measured. Figure 2-5 illustrates the
evaporator air mass flow rate estimated using a virtual sensor under different fault types
with different fault and load levels. This virtual sensor used the measured refrigerant
mass flow rate. From this figure, it can be seen that the existing shifting fluctuation is
amplified a little, which may be caused by the systematic error in the measurement of
evaporator air inlet and outlet conditions. However, this still does not change the
decoupling feature and the change of evaporator air mass flow rate estimate is still
dominated by evaporator fouling and also it can be aleviated by improving the
measurement scheme.
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Figure 2-5 Decoupling evaporator fouling fault using measured refrigerant mass flow rate

Figure 2-6 illustrates the evaporator air mass flow rate estimated using estimated
refrigerant mass flow rate. As expected, the coupling from compressor valve leakage to
evaporator fouling is not broken if refrigerant mass flow rate is estimated by compressor
map. For the same reason as condenser fouling, unilateral decoupling is sufficient for
FDD application.

Figure 2-6 Decoupling evaporator fouling fault using estimated refrigerant mass flow rate

2.1.4 Liquid-Line Restriction Decoupling

Figure 2-7 illustrates the measured liquid-line pressure drop under different fault
types with different fault and load levels. It is obvious that the liquid line pressure drop is
only influenced by the liquid-line restriction fault. The decoupling between liquid-line
restriction faults and all other faults is broken successfully.

However, it is not practical to measure the inlet and outlet pressures for FDD.

The outlet pressure P, should be estimated using a virtual sensor. Figure 2-8 shows the
decoupling results using estimated P,, and measured P,. It can be seen that the accuracy

of the P,, estimate iswithin +5psi . In addition, the measurement of P, is not available,

so Appendix 1 proposed two estimation techniques. Due to limited data, only the second
technique, assuming constant pressure drop across the condenser, was tested. Figure 2-9

shows the predict pressure drop between P,  and P, . It seems that a constant pressure

drop of 25 psi in the condenser can be assumed to estimate F,.
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Figure 2-7 Decoupling liquid-line restriction using measured pressure drop
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Figure 2-8 Decoupling liquid-line restriction using estimated pressure R, and measured
R
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Figure 2-9 Decoupling liquid-line restriction using estimated pressure drop

2.1.5 Refrigerant Leakage Decoupling

Figure 2-10 shows the decoupling feature of DT, for the different fault and

sh- sc
load levels. It can be seen that all the faults have impacts on this feature. However, since
the refrigerant fault does not have an impact on the other decoupling features (from
Figure 2-1 to Figure 2-9) and the value of this feature is proportional to refrigerant
leakage fault levels, the unilateral decoupling is achieved successfully.

It should be pointed out that this feature monotonically decreases dightly with
load level. This is expected, because no model is used for this feature and a fixed orifice
can not compensate for load level variations very well. Although these impacts are a little
larger than those of a TXV system, they are still reasonably small. Anyway, it is still
advisable to improve this feature furthermore by modifying it using load level.
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Figure 2-10 Decoupling refrigerant leakage faults using DT,

sh- sc

2.2 Purdue Field Emulation Site’s Demonstration

61

To demonstrate the decoupling-based fault detection and diagnosis approach,

multiple-simultaneous faults were artificially introduced to the Purdue fidd emulation

site, which has been described in a previous deliverable.

The decoupling-based fault detection and diagnosis approach described in

Chapter 1 was applied to the demonstration. To make the demonstration intuitive, a

movie was made to show the whole process. There are four windows shown in the movie:

Fault Detection and Diagnosis Window, System Performance and Safety Degradation

Window, Fault Simulation Window, and Fault Detection and Diagnosis Window (see

Figure 2-11). The following sections describe all the windows in detail and present some

sample results.
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Fault Detectien and Diagnosis Window

—

FOO Demo for Multiple-Simultaneous Faults

Field Fault Simubaticn Window
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Figure 2-11 lllustration of Demo Movie

2.2.1 Field Fault Simulation Window

For easy access, four faults were artificialy introduced: refrigerant low charge,

condenser fouling, liquid line restriction and compressor leskage. Since it is not accurate

to discharge refrigerant using the recovery system, the refrigerant low charge fault was

simulated by charging less refrigerant to the system before running rather than

discharging some refrigerant during operation. The fault simulation procedures were

divided into the following two stages: added four faults one by one and removed faults

one by one. Figure 2-12 illustrates the timeline of the fault simulation.
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Figure 2-12 Timeline of the fault smulation in minutes.

The following steps describe the addition of faults,

1

Evacuated the system, and then charged the system up to eighty per cent of
nomina refrigerant charge. T he system ran for half an hour to reach steady state
and then data were logged

After logging half an hour of low charge data, the condenser fouling fault was
added, by covering thirty per cent of condenser area usng paper. At this time,
there were two simultaneous faults in the system: refrigerant low charge and
condenser fouling.

Haf an hour later, a liquid line restriction fault was introduced by closing the
restriction vave until a twenty psi pressure drop was caused. Three faults
existed in the system ssimultaneoudly: refrigerant low charge, condenser fouling
and liquid line restriction.

Half an hour later, a compressor leakage fault was introduced by opening the

compressor bypass valve to let fifteen per cent of refrigerant mass flow rate
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bypass the compressor. At this time, four faults existed smultaneoudy in the
system: refrigerant low charge, condenser fouling, liquid line restriction, and
compressor leakage.

The following steps describe the removal of faults,

5. After the system ran for half an hour under four faults, the paper covering the
condenser was removed There existed three simultaneous faults in the system:
refrigerant low charge, liquid line restriction, and compressor leakage, which is
adifferent combination than step three.

6. Haf an hour later, the liquid line restriction fault was removed by fully opening
the liquid line restriction vave. At this time, refrigerant low charge and
compressor leakage existed in the system, which is a different combination than
step two.

7. Haf an hour later, the compressor bypass vave was closed to remove
compressor leakage fault. There was only refrigerant low charge fault in the
system.

8. Finaly, half an hour later, the system was charged up to a nominal refrigerant

level. The system was supposed to run normally.

2.2.2 Fault Detection and Diagnosis Window

This window plots the normalized fault indicator for four individual faults using
color bars: refrigerant low charge (Low-Charge), condenser fouling (Cond-Foul), liquid
linerestriction (LL-Restr),and compressor leakage (Comp-Leak).

The normalized fault indicator is the ratio of the current feature value to the
predefined value, which is defined at an individual fault level causing 20% cooling
capacity degradation.

current _ feature- value

Normalized _Fault _ Indicator = :
predefined _ feature_value
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Although the predefined fault level is arbitrary, the author believes that a fault
causing 20% cooling capacity degradation is worthwhile to service
The normalized fault indicator indicates the relative severity of the individual faults.
However, the refrigerant low charge is a system-level fault and its impact on overal
system performance is not only determined by its own charge level but also other faults,
so the indicator oscillates a lot. Fortunately, data collected so far shows that this
oscillation does not change the decision of the fault detection and diagnosis method.

The normalized fault indicators are plotted using color bars. When an indicator is
larger than the threshold, 0.2, it is plotted in red, otherwise in green. According to
experience, an indicated fault level with a performance degradation less than
0.2*20%=4% is not reliable.

2.2.3 System Performance & Safety Degradation Window

Capacity and COP are usually used as criteria to indicate system performance.
The compressor is the most expensive part of the system and too much overheating
would result in safety problems such as bad lubrication and motor short-circuit. So
degradations of these three indices are plotted in this window. The capacity and COP
degradations are defined by,

normal _value- current _value
normal _ value

The normal value is predicted using an overal system performance model which
is built based on system manufacturer rating data. The model inputs are condenser inlet
air dry-bulb temperature and evaporator wet-bulb temperature.

The compressor overheat degradation is defined by,

current _ T, - normal _T,
max_ DTy

The maximum DT, is found to be around 40 F by Chen's data (2000), which

should be confirmed by more investigation. There is difficulty to predict norma values
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for T, because there is no overall system state model available. For this demonstration,

it is assumed that the system driving condition is not changed much and the measured
value at the fault free condition is used as the normal value. Further research should be

done later to find an inexpensive safety indicator for a compressor.

2.2.4 FDD Report Window

To help customers make a decision whether to service the diagnosed fault or not,
the FDD Report Window generates a tabular report for the FDD results including
diagnosed faults and relative severity indicators and system performance and safety
degradation indices, and provides an FDD recommendation. In this demo, the FDD
recommendation is based on performance and safety degradation. If the performance
degradation is over twenty per cent or the compressor is overheated up to ninety per cent,

service is recommended. More investigation is needed for fault recommendation.

2.2.5 Output of the FDD Demonstration

This section provides sample outputs of the FDD demonstration after each fault
was added and removed (watch the movie for details).

Figure 2-13 captures a movie frame when the system was running a low
refrigerant charge (step 1 of section 2.2.1). The “Fault Detection and Diagnosis window
(FDDW)” indicates that there existed arefrigerant low charge fault whose fault severity
was around 0.45. The “System Performance & Safety Degradation Window (SPSDW)”
plots the overall degradations, al of which were less than 20%. The “FDD Report
Window (FDDRW)” summarizes the indicates and generates the FDD report table and
recommended that “although there is (are) fault(s) with minor impacts on overall system

performance, it may be not worthwhile to service so far”.
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Figure 213 Outputs of the FDD demonstration after introduction of low refrigerant
charge fault

Figure 214 shows one frame after 30% of the condenser area was covered by
paper (step 2 of section 2.2.1). The “Field Fault Simulation Window (FFSW)” shows that
some part of the condenser area was covered by paper. FDDW indicates that there existed
two faults: refrigerant low charge with the fault severity around 0.45 and condenser
fouling with the fault severity around 0.4. Since the overall performance degradations
were less than 20% at this moment (see SPSDW and FDDRW), service was not
recommended (see FDDRW).
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Figure 214 Outputs of the FDD demonstration after introduction of condenser fouling
fault

Figure 215 shows one frame after the liquid line restriction fault was introduced
by closing the restriction valve until a twenty psi pressure drop was caused (step 3 of
section 2.2.1). The final position of the restriction valve can be seen from the FFSW (see
Figure 2-18 for the fully opening position). FDDW indicates that there existed tree
simultaneous faults: refrigerant low charge with the fault severity over 1.0, condenser
fouling with the fault severity around 0.5 and liquid line restriction fault with the severity
around 0.35. Since refrigerant charge fault is a system-level fault whose indicator was
impacted by other faults, the refrigerant low charge indicator value increased after the
liquid line restriction fault was introduced. Since the COP was degraded 21% at this
moment (see SPSDW and FDDRW), FDDRW recommended that: the system requires

more refrigerant, the condenser requires cleaning and the filter/drier requires replacement.
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Although every individual fault was not severe enough to @use more than a 20%
performance degradation, the combination of three simultaneous faults aggravated overall
system performance degradations.

FDD Dema for Mulfiple-Simultaneouws Faults
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Figure 2-15 Outputs of the FDD demonstration after introduction of liquid line restriction
fault

Figure 2-16 shows one frame after the compressor leakage fault was introduced
by opening the discharge bypass valve until about 15% of refrigerant mass flow rate was
reduced (step 4 of section 2.2.1). FDDW indicates that there existed four simultaneous
faults: refrigerant low charge with the fault severity over 0.70, condenser fouling with the
fault severity around 0.5, liquid line restriction fault with the fault severity around 0.35
and compressor leakage fault with the fault severity around 0.5 Since the COP was
degraded 24% at this moment (see SPSDW and FDDRW), FDDRW recommended that:
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the system requires more refrigerant, the condenser requires cleaning, the filter/drier

requires replacement and the compressor requires service.
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Finld Faull Simulation Window

Fault Datection and Diagnosis Window

5 08
B
W
T
; 06
% o
|
E
=02
o
Low-Change Cand-Foul LLine-Re=ir Comp-Leak
Individual Fanlt Hame
Systam Parformance & Safery Dagradation Window FDE Raport Window
1 Ty ey g e e T ey ey, e iy
= Cosling Capacity Dagradation || Diagiibozed Fauliie) & Relathve Seveiity lidicator(z)
: : D= COP Degradaion :
e | A T SO SN s Comipi aasol (waihual : Lowe-Chargs | Coredfoud LLRe=r CompLask
= : H : : ; ; TS 45 % 165
5 } : } ; . Systein Perfombaie & Salety Dedr abathon
a I I I I Capecty L comarszzor O erbes
= 175 4% ra
g
z EDD R lati
E T
- System raqures more refrigerant]
5 ' ke ! Condenser reruires cleaning!
= ! ! ! ! FiternTiner requires replacemerl
Compressor requings samice!
] ] ] I

121 1451 181 211 247
Time | min b

Figure 2-16 Outputs of the FDD demonstration after introduction of compressor leakage

fault

Figure 2-17 shows one frame after the condenser fouling fault was removed (step

5 of section 2.2.1). It can be seen from FFSW that the paper covering the condenser was

removed. FDDW indicates that there existed three simultaneous faults. refrigerant low

charge with the fault severity over 0.60, liquid line restriction fault with the fault severity

around 0.3 and compressor leakage fault with the fault severity around 0.8. Since both
cooling capacity and COP were degraded 21% at this moment (see SPSDW and
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FDDRW), FDDRW recommended that: the system requires more refrigerant, the

filter/drier requires replacement and the compressor requires service.
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Figure 217 Outputs of the FDD demonstration after removal of condenser fouling fault

Figure 218 shows one frame after the liquid line restriction fault was removed by
opening the liquid line redtriction valve (step 6 of section 2.2.1). The final restriction
valve position can be seen from FFSW (refer to Figure 215 for the fully closing position).
FDDW indicates that there existed two simultaneous faults: refrigerant low charge with
the fault severity over 0.35 and compressor leakage fault with the fault severity around
0.8. Since COP was degraded 20% at this moment (see SPSDW and FDDRW), FDDRW
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recommended that: the system requires more refrigerant and the compressor requires

service.
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Figure 218 Outputs of the FDD demonstration after removal of liquid line restriction
fault

Figure 219 shows one frame after the compressor leakage fault was removed by
closing the discharge line bypass valve (step 7 of section 2.2.1), which was restored to
step 1 of section 2.2.1 FDDW indicates that there existed one fault, refrigerant low
charge with the fault severity over 0.45. Since the overall performance degradation was
less than 20% at this moment (see SPSDW and FDDRW), no service is recommended.
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Figure 219 Outputs of the FDD demonstration after removal of compressor leakage fault

Figure 220 shows one frame after the system was charged up to the nominal level.
FDDW indicates that there existed no fault. FDDRW reported that the system was

running normally.
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Figure 2-20 Outputs of the FDD demonstration after removal of low refrigerant low

charge fault
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2.3 Results for California Field Sites

Section 2.1 validated the decoupling scheme using laboratory data and section 2.2
demonstrated the whole approach by artificially introducing faults at the Purdue field
emulation site. This section applies the FDD approach to California field sites. Section
2.3.1 presents detailed results for one example site, Milpitas McDonalds restaurant, and

section 2.3.2 summarizes the FDD results for other sites.

2.3.1 Milpitas McDonalds Field Site

This dte is located in Oakland, Cdifornia A 6-ton York rooftop unit
(D1CG072N09923C) is installed for this McDonalds restaurant. A Copeland scroll
compressor (ZR72KC-TF3) and a TXV are used in this RTU. Data collected from April
to October in 2002 were used to do FDD. After filtering the transient data by a steady-
state detector and removing the bad data corrupted by the acquisition equipment, 1119
data points (one data point every five minutes) were retained.

Since the RTU has been installed for several years, faults have been fully
developed. Unlike the Purdue field emulation site, results of this site are presented in the
statistical sense. That is, histogram bar plots are used to present the results.

Figure 221 plots the normalized fault indicator for a liquid-line restriction fault.
It can be seen that all the steady-state data points are located at the right of the red dotted
line, FDD threshold (0.2) and the mean value is around 0.8 That is, all steady-state points
indicate that the liquid-line is restricted. Most likely the filter or drier is clogged by debris.
If this fault happened individually, it would result in about a 16% cooling capacity
degradation.

Figure 2-22 plots the normalized fault indicator for refrigerant charge faults.
Similar to Figure 221, al the steady-state data points are located at the right of the FDD
threshold and the mean value is about 1.6, which means that the system charge is very
low. If this fault happened individually, it would result in about 32% cooling capacity
degradation. However, since refrigerant charge faults are system level faults, their
indicator is impacted by other faults.
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Figure 2-23 plots the normalized fault indicator for a condenser fouling fault. It
can be seen that most of the steady-state data points (>95%) are at the right of the FDD
threshold and the mean value is about 0.5, which indicates that the condenser is a little
dirty. If this fault happened individually, it would result in about 10% cooling capacity
degradation.

Figure 224 plots the normalized fault indicator for a compressor valve leskage
fault. It can be seen that all the steady-state data points are at the left of FDD threshold
and the mean value is about -0.7, which indicates that the compressor works properly and
the compressor has about 15% hesat loss. However, according to heat transfer analysis and
our experience with laboratory data, compressors installed in York and Trane RTUs have
very small hest, less than 5% of the power input and even gain some heat at some
operating conditions. The explanation for this discrepancy is probably that the discharge
line temperature is not measured accurately using the RTD temperature sensor. Appendix
2 discusses the RTD measuring issue and presents a correction approach. However,
Figure 2-24 shows that the discharge line temperature is not corrected accurately as well,

which is because the sensor is not installed properly.
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Figure 223 Histogram bar plot of the normalized fault indicator for condenser fouling
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Figure 224 Histogram bar plot of the normalized fault indicator for compressor valve
leakage

In summary, the system has three faults, low refrigerant charge, liquid line
restriction and condenser fouling. To assess the impact of the diagnosed faults on the
overall system performance, Figure 225 plots the cooling capacity degradation. It can be
seen that the system cooling capacity was degraded 23~45% and the average is about
32%, which is coincident with the value indicated by refrigerant charge fault indicator.
The cooling capacity degradation can be confirmed by investigating the return air
temperature and system running time. It can be seen from Figure 226 that the average
return air temperature is around 78 F and the highest is 88 F, which does not satisfy the
comfort criteria. From Figure 2-27, it can be seen that the system kept running
continuously for a long time (average is 2.5 hours and maximum is up to 9 hours) in
order to remove the heat load So, from the comfort criteria, service should be done to

correct the diagnosed faults in order to maintain comfort.

78



Figure 2-25 Histogram bar plot of the normalized fault indicator for cooling capacity
degradation

Figure 2-26 Histogram bar plot of the return air temperature
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Figure 227 Histogram bar plot of the continuous running time between off-cycles of the
RTU

In addition to the comfort criteria, Figure 228 plots an economic criterion, EER
degradation. It can be seen that the system EER degraded about 10~40%, which depends
on the operating conditions. Compared with the cooling capecity degradation, the EER
degradation was a little smaller. This is because the power consumption was reduced a
little but less than the degradation of cooling capacity when the refrigerant mass flow rate
was reduced due to faults. Figure 229 plots the system power consumption reduction.
The average power consumption reduction is about 15%, which is smaller than the
average cooling capacity degradation of 32%. In sum, the average EER degradation is
21%, which is a pretty large economic loss. Since costs to recover the system charge,
replace the filter or drier, and clean the condenser are not expensive, serviceto correct the
faults is justified.

In summary, from both comfort and economic criteria, it is justified to correct the

diagnosed faults as soon as possible.
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Figure 228 Histogram bar plot of the normalized fault indicator for EER degradation

Figure 2-29 System power consumption reduction
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2.3.2 Summarized Results for Other Sites

Since some necessary information about compressor and TXV and system
configuration is not available so far, the decoupling-based FDD approach was partially
applied to the other sites. Comprehensive FDD results and economic assessment will be
provided after al the necessary information is obtained. Similar to Milpitas site, data
collected from April to October in 2002 were used to do analysis for the following sites

There are two modular school sites at Woodland and Oakland. At each site there
are two 3.5ton Bard wall-mounted heat-pump RTUs (WH421-A). Table 2-1 summarizes
the FDD results for these two sites.

Table 21 FDD results of Modular School sites

Faults Woodland Oakland
RTU1 RTU2 RTU1 RTU2
Refrigerant Normal Normal Normal Over Charge
Charge
Liquid-line | Restriction| Restriction Restriction Normal
Restriction
Evaporator Normal Normal Normal Fouling
Fouling
Recommended Replace Dischar ge some
Service Not yet filter/drier Not yet refrigerant and clean
the evapor ator

Similar to the Milpitas McDonalds site, the Bradshaw McDonalds site uses a 6
ton York RTU. Both Castro Valley and Watt Avenue McDonalds sites have two Y ork
two-stage RTUs, but only ane RTU in each site was configured for FDD investigation
(one is 10 tons and the other is 11 tons). Table 2-2 summarizes the FDD results for these
three McDonalds sites.

There are five Trane heat-pump RTUs (one is 6.25 tons and other four are 7.25
tons) installed at the Walgreens Rialto site. Table 23 summarizes the FDD results for
thissite.
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Table 22 FDD results of McDonalds Restaurant Sites

83

Faults Bradshaw Castro Valley Watt Avenue
Stage 1 Stage 2 Stage 1 Stage 2
Refrigerant Low Normal Normal Low Normal
Charge Charge Charge
Liquid-line Restriction Normal Normal Normal Normal
Restriction
Recommended | Add some NA NA Add some NA
Service refrigerant refrigerant
Table 223 FDD results of Walgreen Retail Store Sites at Rialto
RTU1 RTU2 RTU3 RTU4 RTUS
Refrigerant Extremely Over Charge
Charge Low A littleLow | Normal | Normal
Charge Charge
Liquid-line Normal Small Norma | Normal Normal
Restriction Restriction
Recommended | Add some Discharge a
Service refrigerant Not yet NA NA little refrigerant
immediately

In summary, initial investigation shows that faults happen very frequently at the
field sites. For example, six of the sixteen investigated RTUs have liquid line restriction

faults, seven of them have refrigerant charge faults, and four of them have more than two

simultaneous faults. Seven of the sixteen investigated RTUs justify service immediately.
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3 CONCLUSIONS AND RECOMMENDATIONS

This report first formulated the general model-based FDD methodology in a
mathematical way and cast the SRB FDD method within this framework. Inspired by this
mathematical formulation, a decoupling-based FDD approach was proposed to handle
multiple-simultaneous faults.

Laboratory data collected by Breuker (1998) for a 3-ton fixed orifice RTU
validated the proposed decoupling strategy. And then multiple-simultaneous faults were
artificially introduced into the Purdue field emulation site to demonstrate the decoupling-
based FDD approach. This demonstration showed that the proposed FDD approach can
correctly detect and diagnosis multiple-simultaneous faults and it also demonstrates the
type of information that could be supplied to a user. Finadly, the FDD method was
applied to Cdliforniafield sites. Only partial results were obtained for the Californiafield
sites because not al of the information on the equipment was obtained so far. However,
the results showed that many faults at the field sites can be detected and diagnosed even
if the information is not complete. According to the anaysis of field data, another
conclusion can be drawn that faults occurred frequently and multiple-simultaneous faults
were common at the field sites.

More data for multiple-simultaneous faults under wider ranges of operating
conditions are needed to test the robustness and quantify the performance of the proposed
FDD approach. The instrumentation of the California field sites should to be checked,

improved or even modified to obtain more reliable data.
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APPENDIX 1 PHYSICAL MODELS OF EXPANSION DEVICE

An expansion device is arelatively simple component, whose role is to reduce the
pressure and regulate the refrigerant flow to the low side evaporator in accordance with
load demands. As mentioned in Section 1, amodel of the expansion device can be used to
estimate its upstream pressure. There are two kinds of expansion devices used in vapor

compression system: fixed-area and adjustable throat-area expansion valve.

Al.1 Fixed-Area Expansion Device Models

The fixedarea expansion devices are typically used on certan smal air
conditioners and refrigeration systems where operating conditions permit moderately
constant evaporator loading and constant condenser pressures. According to their length
to-diameter ratios, L/ D, fixed-area expansion devices fal into one of three categories:
an orifice with L/D <3, a short-tube with L/D=3~35, and a capillary tube
with L/ D > 20 (ASHRAE 1998). Among them, capillary tubes are used in home
refrigerators and room air-conditioners of small capacity, while short-tubes are widely
used in packaged residential and small commercial air-conditioners and heat-pumps of

relatively large capacity.

A1.1.1 Orifice Models

Although orifices are seldom used as refrigerant expansion devices nowadays,

their operation principles are the basis for the operation of adjustable throat-area control
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devices. An equation for liquid mass flow rate across an orifice could be derived from
Bernoulli’ sequation (ASHRAE 1997) as,

M= C,A|2r (P, - Py ) /(L- b*) (A1-1)

2
where, C, is discharge coefficient, A= pD

is the throat aea, r isdensity, R, isthe

upstream pressure, P, IS the downstream pressure, and b is the ratio of the orifice
diameter, D, to the upstream tube dameter. Since b varies from 0.1 to 0.2, raising b

to the fourth power results in a very small number. Therefore, the term of (1- b *) could

be dropped from the equation.

m=CyA2r (P,, - Piun) (A1-2)
Benjamin and Miller (1941) conducted experiments of sharp-edged orifices of
L/ D =0.28 ~1 with saturated water at various upstream pressures and found that
1. Orificeshaving L/ D <1 did not choke the flow at normal operating conditions and
therefore could not be used as refrigerant expansion devices.

2. The discharge coefficient found for a two-phase water mixture was approximately

the same as that for cold liquid water.

Some other researchers (Roming et al., 1966; Davies and Daniels, 1973) refined
the above equation to dea with two-phase situations more accurately by adding an

expansion factor, y, which is unity if no vaporization occurs.

m= Cd yA\IZr (R,Ip - I:)down) (A1'3)
In summary, the mass flow rate equation of orifices can be generalized as,
M= CA{2r (P, - Piun) (A1-4)

It should be pointed out that some researchers (Chisholm, 1967; Krakow and Lin
1988) observed that the mass flow rate of a refrigerant through an orifice in a heat pump
was primarily dependent on the upstream conditions, which indicates that the flow was

choked. This warrants further investigation.
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Al1.1.2 Short-Tube Models

Many researchers (Bailey, 1951; Zaloudek, 1963; Mei, 1982; Aaron & Domanski,
1990, and Kim & O’Neal, 1994) conducted experimental or theoretical research on short-
tubes. Among them, Aaron & Domanski (1990) and Kim & O’Neal (1994) obtained good
consistent results and proposed some good correlations. There is no doubt that the flow
through a short-tube in air-conditioner applications is choked. Following is the model

format for short tubes.

My =CcA 20l (P - Pr) (A1-4)
where A.is the flow area, g, is the dimensional gravity constant, C_is a constant that
corrects for inlet effect. r and B, are the upstream refrigerant density and pressure,
respectively. For a sharp-edged entrance, C_ =1, otherwise, C, depends on the inlet
chamfer geometry as,

C, =1.0+0.02655(L / D) *"*""( DEPTH / D) %226
DEPTH is the inlet chamfer depth (45° chamfer angle) and P; is the flashing pressure,
which is approximated by a semi-empirical equation as,

P, =P, (L005+5.7367(P,, / P,) **(L /D) °*™ SUBC°*** + 0.268(P,, / P,)>™*)
- 0.226exp(- 0.021(D /D, )(L/ D)?) - 0.092EVAP

where P, is the liquid saturated pressure corresponding to T,,, L/ D is the ratio of

up *
length to diameter, D/D, is the non-dimensional diameter with D, =1.35mm,
UBC =(Tg, - T,,) /T, with T in absolute temperatures, EVAP= (P, - P,)/ P, with P
in absolute pressures, T, and P, are critical temperature and pressure, respectively, P, is
the saturated pressure corresponding to T,which can be measured, and T, is the
saturated temperature corresponding to P,,. Using this model, P, can be estimated if
M. Can be estimated using a compressor map.

It was reported in the literature that the above model works very well for upstream

conditions with positive subcooling and reasonably well down to 10% quality. Our FDD
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application fals into the “very well” range, because if the upstream has no subcooling

DT, would be used to do FDD for aliquid-line restriction.

A1.1.2 Capillary-Tube Models

Since capillary tubes are used very widely in household refrigerators and room air
conditioners, exhaustive research has been conducted for capillary tubes. Similar to a
short-tube, the flow through a capillary tube is choked. Since capillary tubes are seldom
used in small commercia air-conditioners and many good correlations can be found in

the literature, models for them are not repeated here.

Al.2 Adjustable Throat-Area Expansion Valve Models

The drawback associated with fixed-area devices is their limited ability to
efficiently regulate refrigerant flow in response to changes in system operating conditions,
since they are sized based on one set of conditions. Adjustable throat-area expansion
valves provide a better solution to regulating refrigerant flow into a direct expansion type
evaporator using certain feedback control strategy. The thermostatic expansion valve
(TXV) and the eectric expansion valve (EXV) fal into the adjustable throat-area
expansion valve. The TXV uses a single variable proportional feedback control scheme
to maintain a nearly constant superheat at the evaporator outlet. The fundamental
principle of a EXV is the same as a TXV except that it is designed with sophisticated
system control strategies including PID and multivariable control.

Although TXVs and EXVs are used widely, modeling literature for them is very
limited. When building a simulation model fa a system, some researchers ignored them
and assumed constant superheat. Some researchers (Harms, 2002) correlated TXV
performance using experimental data. Among the limited literature, none discusses
fundamentally whether the flow is choked or not. In the limited literature, the following
format for a TXV model has been adopted,
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m=C L\’ r (Pup - Pdown) (A1_5)

The above eguation is the same as that for an orifice except that A is a variable.
Therefore, it seems that mass flow rate is a strong function of pressure drop

DP =P, - Py, and variable restriction area A but a very weak function of upstream
refrigerant subcooling T,, . The implicit assumption is that the flow is not choked.

Before wsing this model format, it is advisable to validate this assumption.

A2.2.1 Model Format Validation Using Manufacturers’ Rating Data

Whether the flow is choked or not can be checked indirectly by analyzing
manufacturers rating data. Equation (A 1-5) can be rearranged as,

mref
CA= (A1-6)
r(P,- P

up down)

According to ANSI/ASHRAE standard 17 (1998) and ARI standard 750 (2001),

maximum throat-area A is nearly fixed by fixing the opening superheat when generating
the manufacturers rating data for a TXV. For a EXV, the maximum throat-area A is
exactly fixed at the rating value. So CA for a EXV should be constant and that for a TXV

should be relatively constant if the flow is not choked.

Figure A1-1 shows that CA of an ALCO EXV is pretty constant (mean: 6.7881,
standard variation: 0.0101, standard variation/mean: 0.15%) over the whole set of rating
conditions (evaporator temperature: -40F~40F and Pressure Drop: 50psi~250psi).

For a Sporlan TXV, Figure A1-2 showsthat CA has an abrupt change from an air
conditioning application (evaporator temperature: -5C ~ 5C) to arefrigeration application
(evaporator temperature: -15C). In spite of the abrupt change, its overall variation is till
smal (mean: 1.1018, standard variation: 0.0323, standard variation/mean: 2.93%).
Furthermore, the variation is very small within each application range. For air
conditioning applications, the mean is 1.1238, standard variation is 0.0021, and standard
variation/mean is 0.19%. For refrigeration applications, the mean is 1.0578, standard
variation is 0.0013, and standard variation/mean is 0.12%. Therefore, the TXV mode

format is accurate and the flow is not choked.
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Figure A1-2 The CA value of a SPORLAN TXV of manufacturer rating conditions
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The abrupt change of CA for the TXV can be explained by the P-T curve of the
thermostatic charge fluid. Figure A1-3 shows that the P-T curve becomes flatter at lower
temperature. As a result, a given opening superheat results in less pressure difference
across the valve diaphragm at lower evaporating temperatures causing a reduction in

valve opening A. For example, the pressure difference caused by 5 C of opening
superheat at an evaporating temperature of 5 C is 0.969 bars, which is far larger than

0.584 bars at an evaporating temperature of -15 C. Fortunately, this would not cause a big
problem because of the following reasons:

1 The P-T curveis pretty linear if it is divided into three sections: AB, BC and CD.
For a given application, the TXV will work in one of the three sections. The TXV
used in packaged air conditioning falls into section CD.

2. It can be diminated or overcome using cross charge. The above analysisis based on
liquid charge. As to cross charge, the power fluid is chosen so that the superheat
required to open the valve is nearly constant over the entire operating range.

8 - . - . - . ; . . :
i D
7‘ + r% T
I 0.969Bar |
| &

X

at | :
- C -
0.584Bar M — 5C |

5c [
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-40 -30 -20 -10 0 10 20
Tsat [C]

Figure A1-3 P-T saturation curve for R22
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In summary, from manufacturers' standard rating data, the flow across a TXV or
EXV is not choked and the generally used model format is valid. To specify the TXV or
EXV mode, the key point is to find the expression for variable throat-area, A, and then
specify the constant C using manufacturers' rating data.

Generdly speaking, the throat-area, A, is a function of valve position, which is
determined by the control strategy used by the valve. Because TXVs and EXVs use
different control strategies, the first step isto derive the A in terms of valve position and

then develop expressions for valve position.

Al.2.2 Derivation of Throat-Area A Expression

As shown in Figure A 1-4, there are three kinds of valves used in TXVs and EXVs

and each different type has a different expression for A. Among them, type | and || are
used widely and their expression is the same.

Typell Typelll

Figure A1-4 Three types of valve geometry

Figure A1-5 shows the geometric model of valve type | and Il. At a certain valve

position, h,
_P/q2 2
A==(D°- d9),
4( )

where, d =2tanq(H - h) and tanq :%,so,

>0 i _m=pa. N
d=2_°-(H-h)=D(- ),
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These equations can be combined to give,

)

D2(2- 1
H

nyy_ph
TURRAT

(

:BDZ(L_ 1
2 H 2

)*)

h.
H
It is obvious that throat-area, A, isa second order function of valve position, h,

which is plotted as Figure A 1-6.

(

2h
D?- D?(1- =+
( ( m

A=E
4

Pstatic + DPspri ng

I:)(:I ose

Figure A1-5 Geometric model of type | and Il valve

Type lll

Typel & II

Figure A1-6 Throat-area curves of different valve types
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Figure A 1-7 shows the geometric model of valve type l11. It is very easy to obtain

the expression as,

N

Figure A1-7 Geometric model of valve type Il

It is obvious that throat-area, A, isa linear function of valve pasition, h.

Al.2.3 Valve Position Expression

The valve position for a EXV can be calculated easily by the control signal. Asto
a TXV, it is the function of superheat. Assume that the pressure difference is a linear

function of superheat,
P

I:)open = le close = kz(x + h) '

sh,operating ! static

Since the forces exerted on the valve are balanced,

lesh,operating = k2 (Xstatic + h) 1

Rearranging the above equation gives an expression for valve position,

K

k_Tsh,operating = Xgatic — k-I-s.h,operating = Xgatic
2
= kTsh,operating - k-I—:sh,static = k(Tsh,operating - Tsh,static) :
= KT,

sh,opening
As shown in Figure A1-8, it is obvious that the valve position is a linear function

of opening superhesat.
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sh,max openirlg

_Tsh,static !'“Tsh,opening ]
T

sh,operating

Figure A1-8 Vave position curve

Tsh

Al.2.4 Overall Mass Flow Rate Model of TXV

The overall mass flow rate model for a TXV can be obtained by substituting the
expression of throat-area and valve position expression into the general model equation.

Astotypel and I,

D2 h h D2 kTs openin kTs openin
A=p —(2- _):p h,op 9(2_ h.op g)
4 HW H 4 H H
— pD2 kTsh,maxOpening _ I<Tsh,opening — pD2 TShyopening _ Tsh(’pe”i”g
2 2
_ ( )= ( )
4 KT KT, 4 T T,

sh,max opening sh,max opening sh,max opening sh,max opening

. D2 Tsoenin Ts openin
m=C, r(Pup_Pdown):Cdp4Th’p : (Z'Th’p g)\r(FLp'P

sh, max opening sh,max opening

Ts openin: Ts openin
=C(2T Repenne -(T NG

sh,max opening sh,max opening
Asto typelll,
A= pDKT,

h,opening

m=C, r(Pup - Poun) = C4pPDKT,

= CTsh,opening '\’ r (Pup - Pdown)

h,opening r (Pup - Pdcvwn)
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Figure A1-9 shows the refrigerant mass flow rate curves at a fixed pressure drop.
It can be seen that:

1 The mass flow rate of type | & Il vaves is higher than that of atype Il valve with
the same operation range at the same opening superheat except that the valves are
fully open or close. That is, for the valves with the same operation range, type | & 11
valves require smaller superheat to get the same capacity than type I11 valve.

2. The mass flow of type Il keepsincreasing linearly with the opening superheat until
the maximum opening superheat arrives, while that of type | & 11 keeps increasing
nonlinearly and the increasing rate decreases smoothly down to zero when the valve
is fully open. That is, for type | & Il vaves to have the same reserve capacity as a
type 111 valve more superheat is required, so type | & 11 valves would be expected
to have smaller reserve capacity (around 10%) than that of type Il (up to 40%) in
order to avoid abnormally high superheat at high capacity operation. However, a
possible advantage is that type | & Il valves may help reduce the problem of the
TXV dternately overfeeding and underfeeding the evaporator, which is usualy
termed hunting or cycling.

Typel & 1l

Typelll \ /

Mass flow rate

_Tsh,static_Tsh,ratingoperilng_ Superheat Tsh

T

sh,max opening

Figure A1-9 Mass flow rate curves at a fixed pressure drop
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Al.2.5 Parameter Estimation Method

Having determined the model format, it is important to identify the parameters.
From the above analysis, it can be seen that the mass flow rate for type | and Il TXVsisa
nonlinear function of superheat while that of type Ill is a linear function of superheat.
However, in most of the existing literature, it is assumed that the mass flow rate of al
kinds of TXVs is a linear function of superheat. So, in order to simplify the parameter
estimation, the global linear assumption can be adopted (no approximation for type Il
TXV). There are two proposed ways to estimate model parameters using manufacturers
rating or experimental data. One is to wse the linear assumption and the other is directly

estimate parameters.
A1.3.2.5.1 Global Linear Assumption Method

Under the global linear assumption, the general TXV modd is

down

m= C(Tsh,operating - Tsh,static) r (Pup - P

Rearranging the above equation,
m

J:«/r (Pup_ Pdown)

The parameters of the TXV model can be determined by the following procedure,

C (Tsh,operati ng - Tsh,stati

1. According to manufacturers rating data,

C(TSh’fatinQ B TShvﬁatic) = CTsh,ratingyopening = constant

where T,

sh,rating,opening

is fixed by the TXV manufacturer and should be readily
available. Although the TXV manufacturer presets the Ty ... a well, the

manufacturer of the air conditioning system would adjust it dightly in order to
match the rated capacity.

2. IF Ty, atingopening 1S @vailable from the manufacturer, go to step 3. If not, roughly

guess an initial value according to ARI and ASHRAE standards and
manufacturing tradition (Table A 1-1).
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Table A1-1 TXV rating settings

Tsh,rating,opening Tsh,rating Tsh,static Reserve
Source (€) (€) (€) Capacity
ARI Standard £4 >1
ASHRAE Standard Example 3 3
ASHRAE Handbook 2~4 0.1~04
AL CO (recommend) 22~33 3.3~5.6
SPORL AN(recommend) 4.4~6.7
Recommended Initial Guess 3or4 3,4o0r5 0.1

3. Determine C :M.

sh, rating,opening
4. Determine Ty .- If the number of rotations adjusted by the system manufacturer
is recorded, it could be very easy to calculate the actual static superheat. If not, it
could be guessed initialy by the manufacturer settings and refined by
experimental data.
5. Determing T, 1 opening USING the manufacturers’ tradition of reserving capacity to

et the upper boundary of (Tsh,rating - Tsh,static) .
T

sh,rating,opening

T

sh,max, opening

» 1- reserve_ capacity

A1.2.5.2 Nonlinear Parameter Estimation Without Specification Data

The nonlinear model format is

Ts openin Ts ,openin
M= CR= - (=), (R, - Py

sh,max opening

UWFI)

sh,max opening
Rearranging the above equation,
_ ( Tsh,opening )2) — m
T

sh,max opening —\, r (ij - Pdown)

The parameters of the TXV model can be determined by the following procedure,

C (2 Tsh,opening
T

sh,max opening

1. According to manufacturers' rating data,

Ty i : Ty ai 4
sh,rating,opening sh,rating,opening
C(2 - (

T T,

sh,max opening sh,max opening

2. According to manufacturers’ tradition of reserving capacity,

)?) = constant
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T

sh,ratingopening sh,ratingopening
(2 - ( )2) »1

T, T,

sh,max opening sh,max opening

- reserve_capacity

b C-= constant
1- reserve _capacity

and solving the equation,

T

sh,rating,opening

T

sh,max opening

=1- \/reserve_capacity

3‘ Determl ne Tsh,static md Tsh,rating,opening
4. Determine T,

sh,max, opening

as described in the last section,
and set the upper boundary for (T T,

shrating ~ sh,static) :

Al1.2.5.3 Validation Using Harms “Data

The 5ton RTU Data collected by Harms (2002) were used to validate the TXV
Model (Number: CBB-I-VE-5VGA). This TXV isa Sporlan model and normally is used

specialy for heat pumps because it has a check valve inside.

Global Linear Assumption:

According to the manufacturers' rating data,
C(Tsh,rating - Tsh,static) = constant =1.125

From experimental data set A from Harms (2002) with a nominal charge, it can be
guessed that

Tsh,rating :8 C
Aﬁ]ml ng Tsh,rating,opening = 4 C » SO
Tsh,static = Tsh,rating - Tsh,rating,opening =8-4=4C

o,

C= % =0.2813
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Assuming the reserve capacity is 10%, since most of valves belong to type | & I,
Tsh,rating,opening — i » 4.5

T, .
1- reserve_capacity 0.9

,max, opening »

m= C(Tsh,operating - Tsh,static)'\/ r (Pup - PdUWH)
= 0'2813(Tsh,operating - 4) ’\/ r (RJP ) Pdown)

where, the upper boundary of (T, .ing = Tehnstanic) ISSEta 4.5°C.

Nonlinear Parameter Estimation:

Similarly, according to the manufacturers’ rating data,

T, .. . T, . )
C(2 -Fh,ratmg,openmg _ ( _Fh,ratmg,openlng)z) = constant :1125

sh,max opening sh,max opening

Assuming reserve capacity of 10%,

constant _ 1125

C= _ =1.2656
1- reserve_capacity 0.9

and,

T, . .

_Sefneoret™ = 1- Jreserve_capacity =1- /0.1=0.68

sh,max opening
Similarly, assume Tsh,rating,opening =4C !
4
T - =——»6°C
sh,max opening 068

0,

T A T i
m = C(2 sh,opening ( sh,opening )2) r (P -

T

sh,max opening

Ts openin Ts ,openin
=1.2656(2 “'g 2 ( hg DT (P = Pugun)

Tsh,static) = T

sh,opening

sh,max opening

where, the upper boundary of (T, issetat 6°C.

shrating ~
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Harms Result

Harms plotted al four sets of data (see Figure A1-10) and fit the following model
by minimizing the least squares error.

My =G (Tupe - C) &7 ¢ (R - PR

05

Harms determined ¢l = 0.51*/10,c2=1. So,
m=0.51* '\/E(Tsh,operating - :D—\' r (Pup - Pdown)

where the upper boundary of (T -Dwassetat 8C.

sh,operating

Figure A1-10and Table A 1-2 show the results of the global linear assumption and
nonlinear parameter estimation approaches. To test how well the experimenta data are
fitted to a linear model, the model correlated by Harms was tested using the same data
used for training. It is obvious that the nonlinear parameter estimation obtained better
results than the global linear assumption which is comparable to the interpolation
performance of Harms model. In addition, from the testing of Harms model, it can be

seen that linearization will inherently result in larger errors under many circumstances.

O 1 1 1 1
0 2 4 6 8 10 12 14 16

Tsuper [h C]

Figure A1-10 The C, A value of the 5ton Trane RTU TXV as afunction of superheat
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0.15
% —e—Nonlinear —&— Linear —— Todd-Harms
= o013
2 N
S
£ 005 A —1
s W W /
5 8
S 7 0
o / W
(<]
= .0.05
= 0.
3 "\E\‘/
'01 T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
Experimenta data point
Figure A1-11 Comparison of TXV modeling error
Table A1-2 Comparison of TXV modeling error
Nonlinear Global Linear | Harms Results
Estimation Estimation

Mean 0.0096 0.0043 0.0235

Sd. 0.0291 0.0460 0.0352

Spread 0.0967 0.1647 0.1329

Although Harms' gray-box method may be good for interpolation, it can not be
expected to extrapolate well. Mathematically, his method is equivalent to making a local
linear assumption (see Figure A1-12). If the experimental data range is limited,
parameters C, and C, will be unreasonable. For example, in his method parameter C, of
the 5tos RTU, which is supposed to be the static superheat setting, is equal to 1°C, while
the upper boundary of opening superhesat is set at 8 C . According to ARl and ASHRAE

standards, static superheat should be far larger than 1'C, and 8 C of upper boundary for
opening superheat (indicating a’50% of reserve capacity ) istoo large. For a 7.5 ton RTU

considered by Harms, parameter C, was correlated to be a negative value, - 44°C,

which is impossible physically.
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n=

Locd

“%' Mass flow rate

A
‘u:;'
\ 3
p
oy
\
N

\

T

sh,statiq”™

T

sh,max opening

Superheat T,

sh,ratingopering ™|

Figure A1-12 lllustration of the three parameter estimation methods
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APPENDIX 2 RTD TEMPERATURE SENSOR MEASURING ISSUE

The experiment data collected by Breuker (1997), Chen (2000) and Harms (2002)
were measured using thermocouples, so the compressor energy analysis is balanced very
well. However, the field data energy analysis shows that there are over 50% heat losses
from the compressor, which is impossible from the heat transfer point of view. It was
found that the mideading result is caused by inaccurate discharge-line temperature
readings measured using RTDs. Figure A2-1 illustrates the RTD measuring scheme.

T .
\.

Figure A2-1 RTD measuring scheme

It is described in the literature that: “If the sensor is not insulated, the sensor's
reading would be a weighted average of the tube wall and ambient air temperature”. In
addition, the temperature of the sensor is not geometrically distributed uniformly even if

the sensor is insulated properly, which is difficult to evaluate. Ideally, assume the
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temperature on the RTD is uniform and identical with the tube wall temperature, which is

equivalent to thermocouple (see Figure A2-2).

Tof ao
TOW ! MA/J/\\
d,=d,-d, | /
; Tiw
ai Tif

Figure A2-2 Thermocouple measuring scheme

Figure A2-3 sketches the equivalent thermal circuit of the thermocouple
measuring scheme and thermal resistance values are listed in Table A2-1. It can be seen
that the thermal resistance between refrigerant inside the tube and the thermocouple only
accounts for 1.6% of the total thermal resistance, which means that the measuring error
would be 1.6 F if there was a 100 F temperature difference between the refrigerant inside
the tube and ambient air temperature. So it can be concluded that the thermocouple can

measure the refrigerant temperature at reasonably good accuracy.

Tiw Rtb Tow Rin Tln
1 In(d,/d,)  In(d,/d,) 1
aipdl 2p|tb a)l in aopdl

Figure A2-3 Equivaent thermal circuit
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Table A2-1 Thermal resistance distribution of thermocouple measuring scheme

111

Thermal R Re R, R,
Resistance
Vaue 0.0278 0.0000765 1.052 0.682
Portion 1.6% 0.004% 59.7% 38.7%
Portion 1.6% 98.4%

However, there are two additional factors which would impact the measuring
accuracy of an RTD. Oneis the thermal contact resistance between the tube wall and the
RTD, and the other is the temperature distribution of RTD. The former is straightforward
and impacted only by sensor installation nethod. If therma grease is applied and the
tube’'s surface is polished, it would be reduced significantly. However, the latter is
difficult to evaluate and is impacted by insulation and the installation method, but its
impact on measurement accuracy can be equivalent to that of thermal resistance. So an
equivalent thermal contact resistance, R_,,..., Which takes both thermal contact resistance
and the resistant effect caused by none-uniform temperature distribution. Since it is

difficult to evaluate R, explicitly, experiments are needed in order to determine all

the valuesin Table A2-2.

Table A2-2 Thermal resistance distribution of RTD measuring scheme

Thermal RI RI b Rcontact RI n Ro
Resistance
Vaue 0.0278 0.0000765 ? 1.052 0.682
Portion ? ?

Experiments conducted at FDSI using cold water instead of refrigerant showed
that the measurement error is around 5% of the total temperature difference between
water inside the tube and ambient air if the RTD was insulated and thermal grease was
applied. Since liquid water has a larger heat transfer coefficient than refrigerant vapor at
the same mass flow rate, the inside therma resistance value should be modified in order

to estimate the equivalent thermal contact resistance, R, - Table A2-3 lists dl the

value for the cold water application. Using the thermal contact resistance value cal cul ated
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in cold water application, it is easy to determine al the values in Table A3-4 for the
refrigerant vapor application.

Table A2-3 Thermal resistance distribution of RTD for measuring cold water

Thermal RI R1 b Rcontact RI n Ro
Resistance
Vdue 0.0278/5=0.00556 | 0.0000765 0.4087 1.052 6.82
Portion 5% 95%

Table A2-4 Thermal resistance distribution of RTD for measuring refrigerant vapor

Thermal RI R1 b Rcontact RI n Ro
Resistance
Vaue 0.0278 0.0000765 0.4087 1.052 0.682
Portion 20% 80%

From Table A2-4, it can be seen that the subtotal thermal resistance between the
refrigerant inside the tube and the RTD is up to 20% of the total, which means that there
would be up to 20 F measurement error even under good contact and insulation if there
was a 100 F temperature difference between the refrigerant and ambient air.

Besides the thermal resistance, the temperature difference between the refrigerant
inside the tube and ambient air is the other important factor (see Equation (A 2-1)).

Error=a(T,« - T,.) (A2

a isthe thermal resistance portion (say 20%).

Since the meximum temperature difference occurs between the discharge line
refrigerant and ambient air, over 100 F. So either thermocouple or modification is needed
(see Equation (A 2-2)).

Tref - aTamb

= (A2-2)

Tref,mod

So the key is to determine the thermal resistance portion a . According to our
experience, if the RTD sensor was insulated very well and tube wall was polished before
thermal grease was applied, it can be reduced to 5%. However, if the sensor is not

properly installed, its value can be very large.
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EXECUTIVE SUMMARY

Packaged air conditioning equipment is used extensively throughout small
commercial and institutional buildings. However, compared to larger systems, they tend
to be not well maintained. Widespread application of automated fault detection and
diagnosis (FDD) to packaged equipment will significantly reduce energy use and peak
electrical demand, down time and maintenance costs. However, techniques for online
FDD reported in the literature are expensive to apply because of requirements for model
training and large computation, have only been tested in the laboratory, and can not
handle multiple-simultaneous faults. Furthermore, no one has performed economic
assessments of FDD. Economic assessment is a complicated problem that requires field
evaluations. The primary goals of the research described in this report were to 1) develop
a practical automated FDD technique having low cost, robust performance, and the
capability to handle multiple-simultaneous faults and 2) to perform an initial economic
assessment of FDD applied to vapor compression equipment in California.

The process of developing and evaluating the performance of FDD methods
involved the use of both laboratory and field data. Laboratory data from previous studies
were used to provide rigorous performance evaluations. In addition, a number of field
sites were established in small commercial buildings in California to allow consideration
of practical issues. An additional field site was set up at Purdue to allow artificial
implementation of faults in order to provide more controlled evaluation of the FDD
techniques under realistic operating conditions.

Two different FDD approaches were developed in this research. First of all, the
statistical rule-based (SRB) FDD method presented by Rossi and Braun (1997) was
modified to improve sensitivity and robustness and reduce computational requirements.

The following components of the FDD method were improved: 1) models for predicting
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normal state variables, 2) steady-state detector, 3) fault detection classifier, and 4) fault
diagnosis classifier. The resulting method is simpler to implement and was shown to have
significantly better sensitivity for detecting and diagnosing faults than the original
method. However, it was not possible to modify the method to handle multiple-
simultaneous faults. Furthermore, the application of this method to the field sites proved
to be difficult because of the requirement for training models using field data. The
method is better suited to implementation in original equipment than for retrofit to field
applications.

A second FDD method was developed to handle multiple-simultaneous faults and
to eliminate the need for model training using field data. The ability to handle multiple
faults was addressed by identifying features that decouple the impacts of individual faults.
The need for on-line models was eliminated by employing manufacturers’ rating data
such as compressor and TXV maps. These data are readily available at no cost and are
generic and reasonably accurate. The performance of the decoupling-based FDD method
was initially tested using laboratory data. A prototype software implementation was
developed and a demonstration was created for illustration purposes using the Purdue
field site with faults artificially introduced. Finally, the FDD methodology was applied
to California field sites to understand the condition of the equipment and highlight the
potential for FDD.

Figure E-1 shows output from the FDD demonstration at a point where four faults
had been introduced. The bar chart in the upper-left quadrant shows individual fault
indicators relative to a threshold for detection and diagnosis. Each of the fault indicators
have been normalized so that full scale (i.e., 1.0) corresponds to an individual fault
causing a 20% degradation in cooling capacity. The graph in the lower-left quadrant
shows impacts of the faults on performance and safety factors as a function of time
during the demonstration. The factors include cooling capacity, COP, and overheating of
the compressor. The capacity and COP are reductions relative to values for equipment
operating normally. The compressor overheating is the difference between the current
and normal compressor discharge temperature normalized by a value considered to be

harmful to the compressor life. The table in the lower right quadrant summarizes the
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current values of the fault indicators and performance and safety factors. Also shown are
current recommendations provided by the FDD method. The demonstration has been
very useful in testing the FDD method for single and multiple faults and for illustrating
the potential for application of FDD.

FDD Demo for Multiple-Simultaneous Faults

Fault Detection and Diagnosis Window Field Fault Simulation Window
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Figure E-1. FDD demonstration output

The decoupling-based method was then applied to field data. Figure E-2 shows
example results for a rooftop unit at the Milpitas McDonalds field site determined over an
entire cooling season. This plot is a histogram of the normalized fault indicator for a low
refrigerant charge. All the steady-state data points are located at the right of the FDD
threshold and the mean value is about 1.6, which means that the system charge is very
low. In addition to low refrigerant charge, the FDD method identified a clogged filter-

drier and a fouled condenser coil for this site.
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Figure E-2 Histogram of the normalized fault indicator for low refrigerant charge

Figures E-3 and E-4 show the degradation in cooling capacity and EER for the
Milpitas site. The system cooling capacity was degraded between 23 and 45%, with an
average degradation of 32%. The cooling capacity degradation was confirmed by
analyzing zone temperature and system runtime data. The rooftop unit at this site was not
maintaining comfort conditions at all times. The system EER degraded between about 10

and 40%, with an average of 21%.
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Figure E-3 Histogram of the cooling capacity degradation
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Tables E-1, E-2, E-3, and E-4 summarize FDD results for the other field sites.
Eleven of the twenty-one investigated RTUs have liquid-line restriction faults, ten of
them have refrigerant charge faults, and eight of them have more than two simultaneous

faults. Service would be justified for nine of the twenty-one investigated RTUs.

Table E-1 FDD results for modular school site

Faults Woodland Oakland
RTUI RTU2 RTUI RTU2
Refrigerant Normal Normal Normal Over Charge
Charge
Liquid-line | p o iction Severe Restriction Normal
Restriction Restriction
Evapo.rator Normal Normal Normal Fouling
Fouling
Recommended Not yet Arral}ge Not yet Arrange Service
Service Service




Table E-2 FDD results of McDonalds Restaurant Sites
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Castro Valley Watt Avenue
Faults Bradshaw Stage 1 Stage 2 Stage 1 Stage 2
Refrigerant Low Charge Normal Normal Low Charge Normal
Charge
L1qu1§1—1} ne Restriction Normal Normal Normal Normal
Restriction
Recommended Arragge NA NA Not yet NA
Service Service
Table E-3 FDD results of Walgreen Retail Store Sites at Rialto
RTU1 RTU2 RTU3 RTU4 RTUS
Refrigerant Extremely
Charge Low Charge Low Charge | Normal | Normal Over Charge
Liquid-line Normal Small Normal | Normal Normal
Restriction Restriction
Recommended Reqqlre Arragge NA NA Not yet
Service Service Service
Table E-4 FDD results of Walgreen Retail Store Sites at Anaheim
RTUI RTU2 RTU3 RTU4 RTUS
Refrigerant Low
Charge Low Charge | Low Charge | Normal Charge Normal
Liquid-line Small Severe Small Small Small
Restriction Restriction | Restriction | Restriction | Restriction | Restriction
Recommpnded Arrar}ge Reqqlre Not yet Arrar}ge Not yet
Service Service Service Service

Some initial estimates of the economics of FDD were made based upon the field

results. Opportunities for cost savings with automated FDD that were included in this

analysis are:

1. Savings associated with eliminating planned preventive maintenance services.

Instead, the FDD system would schedule service when it is most economical.
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Operational cost savings, which include two parts: utility cost and equipment
life savings. The utility cost savings should include both energy and peak
demand savings associated with equipment operating more efficiently due to
better maintenance. Equipment life savings are due to two effects resulting
from better maintenance: less adverse operating conditions for the compressor
and decreased runtime due to cooling capacity that is closer to rated
performance.

Fault detection and diagnosis savings, which includes two parts: unnecessary
service and fault diagnosis savings.  Unnecessary service includes regular
service, such as coil cleaning, that is not justified and unnecessary repairs that
are based upon incorrect fault diagnoses. Fault diagnosis savings are due to
reduced technician time associated with diagnosing a problem.

Smart service schedule savings. The primary savings are associated with
reducing the total service calls by only performing service when it is
economically justified and by scheduling multiple service tasks during each

service visit.

In order to quantify the net savings, the following conservative assumptions were

made:

L.

2.

A 10-year equipment life under normal operating conditions with no
replacement of major components, such as the compressor and fan motors
during the life of the equipment. Actual equipment life might be longer, but
with major service required including compressor and fan motor replacements.
These major service requirements are not considered in this analysis.

No effect of adverse operating conditions on equipment life. This is a
conservative assumption, since improved maintenance due to FDD will reduce
adverse operating conditions for the compressor (i.e., liquid slugging and
overheating). The only equipment life impact considered was reduced runtime

due to improved cooling capacity.
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3. Elimination of preventative maintenance for a savings of $2000 per RTU over
the life of the unit.

4. On average, the performance of the system was degraded for 40% of its lifetime
with an EER and cooling capacity degradation of 21% and 30%, respectively.
This assumption is based upon limited field results and should be confirmed
through additional analysis.

5. No demand savings. This is a very conservative assumption and should be
considered in more detail in future studies.

6. One coil cleaning service can be saved per year through automated FDD.

7. A 60% probability that a refrigerant charge fault will occur once during the
equipment lifetime.

8. A 60% probability that a filter/drier restriction fault will occur once during the
equipment lifetime.

9. A 6-ton RTU having an initial of cost of $4500.

10. A cost for the FDD system of $300.

Table E-5 gives estimates of total lifetime net savings (total savings minus FDD
system cost) for an individual RTU operating in different buildings and locations. The
estimated savings over the life of the unit range from $4000 to $10,000 per RTU. The
annual net savings range from $400 to $1,000 and the estimated payback period is less
than one year. Greater savings are possible in hotter climates due to larger cooling
requirements. The savings would be greater for heat pumps because they operate

throughout the whole year.
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Table E-5 Conservative Lifetime Total Savings per RTU for Automated FDD

.| Building | N
Location Savings
Type
&)
Modular 4,328
North School
. . | Restaurant | 4,800
California Retall
ctal 5,804
Store
Modular 5,496
South School
'u . | Restaurant | 6,772
California Retail
ctal 9,756
Store

Research on further improvements and evaluations of the FDD methodology will

continue as follows:

1.

Obtain more detailed information on the rooftop units for all the California field
sites and apply the proposed FDD technique more completely to these sites.

Further improve the performance of the unified FDD technique by improving the
modeling approach that is based on manufacturers’ data and find an efficient and
practical way to tune these models using low-cost sensors. Improve other virtual
sensors’ performance and consider trying to remove pressure and humidity sensors.
Improve the overall performance model for assessing performance degradations of
packaged air conditioning equipment under faulty operation using limited sensor
and manufacturers’ rating data.

Expand the service cost database and build a more detailed economic assessment
model to more accurately evaluate the potential savings associated with the FDD
technique and to provide guidelines for the fault evaluation and decision step.
Conduct more field tests under multiple-simultaneous faults and, if necessary,
conduct more laboratory tests to test the proposed decoupling-based FDD
technique.

Consider additional control related diagnoses, such as economizer and controller

diagnoses.
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1 INTRODUCTION

1.1 Background on FDD

FDD is an acronym for fault detection and diagnosis. Fault detection involves
identifying whether the supervised system deviates from normal operation and fault
diagnosis is diagnosing or isolating the detected fault(s) from other possible faults. Some
literature uses the acronym FDI to refer to fault detection and isolation.

FDD has been successfully applied to critical systems such as space exploration
and nuclear power plants, in which early identification of small malfunctions would
prevent loss of life and damage of equipment. In these applications, FDD sensitivity is a
vital feature. However, false alarm rate is also an important index because of economic
concerns. A high false alarm rate could result in unnecessary economic loss due to
stoppage of equipment operation. In order to increase FDD sensitivity and decrease false
alarm rate, FDD techniques generally use multiple hardware such as sensors and
computation sources for the same purpose. The high cost of hardware redundancy has
limited the application of FDD to non-critical systems such as HVAC&R systems.
However, with the growing realization of the benefits brought by FDD and the decreasing
cost of hardware especially for computation, more and more applications of FDD have
been attempted for non-critical equipment such as HVAC&R systems.

HVAC systems often do not function as well as expected due to faults introduced
during initial installation or developed in routine operation. Rooftop and other packaged
air conditioners are used extensively throughout small commercial and institutional
buildings, but compared to larger systems, they tend to be not well maintained. As a
result, widespread application of automated FDD will significantly reduce energy use and
peak electrical demand, down time and maintenance costs. Unlike critical systems, FDD

for HVAC systems, especially for small packaged air conditioners, is subject to economic
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constraints. Economic constraints bring special difficulties and issues, which do not need
to be considered in critical systems.

First, since a packaged air conditioner is relatively inexpensive, the cost to realize
FDD for HVAC systems in terms of software and hardware should be low. Therefore
some relatively expensive measurements such as flow rate cannot be used, and use of
pressure and humidity sensors is limited. This is a particular problem in fault diagnosis
since some faults may have similar symptoms and more sensors can help in
distinguishing them. On the one hand, features as sensitive as possible should be
extracted from limited available measurements, and on the other hand, the diagnosis
method should be as sensitive as possible to isolate several faults with similar symptoms
and insensitive features. Computation should be small enough to be implementable
within a microprocessor.

Second, since HVAC equipment are used in diverse weather and climates, the
behavior of the HVAC plant will vary drastically. In addition, since single-point sensor
placement is generally used, many measurements often are biased and noisy. So the FDD
system should be able to handle biased measurements and be robust to different operating
modes and against noise and disturbances.

Third, unlike critical systems in which faults have zero tolerance, a fault
evaluation and decision step should be added to assess the impact of a fault on overall
system performance and make a decision whether the benefit of servicing the fault
justifies its expense.

Fourth, unlike a critical FDD system which is engineered for a specific large
system, FDD for HVAC systems needs to be adaptive and generic (system-independent)
to the same type of system, or at least to similar models from the same product family.
This would reduce the per-unit costs, which need to be low, compared to the HVAC
equipment price.

Finally, multiple-simultaneous faults are pretty common for air conditioners, so
the FDD technique should be capable of handling them. This feature has been neglected

for previous developments and evaluations of FDD techniques.
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In order to reduce hardware costs, FDD for HVAC systems should use analytical
redundancy, which means the information from system measurements should be
preprocessed extensively before it is used to detect and diagnose faults. Furthermore, the
characteristics of being adaptive and generic and capable of handling multiple-
simultaneous faults should be emphasized when developing FDD for HVAC systems.

The rest of this chapter presents a literature review about FDD for HVAC systems
with emphasis on rooftop and other vapor compression air conditioners, provides the
motivation for the proposed research, summarizes the specific research objectives, and
discusses the general approach to evaluating the proposed FDD methods. Chapter 2
describes data sources used to validate and demonstrate the proposed approaches.
Chapters 3 and 4 describe the FDD methodology. Chapter 5 describes the economic
assessment. Chapter 6 summarizes the major completed work and provides some

recommendations for future work

1.2 Literature Review

1.2.1 Overview

In the late 1980’s, some researchers investigated common faults and methods for
fault detection and diagnosis in simple vapor compression cycles, such as a household
refrigerator. With the growing realization of the benefits brought by FDD, many more
papers about HVAC FDD have appeared in the last ten years. Figures 1-1 and 1-2 show
the paper statistics for HVAC FDD over the past 13 years.

From these two figures, it can be seen that the number of papers significantly
increased since 1996 and most of the papers focused on variable air volume (VAV) air
handling units (AHU). Since Comstock, Chen, and Braun (1999) did a very detailed and
comprehensive literature review in 1999, the next section of this report will briefly refer
to some significant contributions before 1999 and concentrate on up-to-date progress

after that.



Number

35 7
30 -
25
20 -
15
10 A

—

Paper statistics in HVAC FDD

1987-1989  1990-1992  1993-1995  1996-1998

Time

1999-2001

Figure 1-1 Paper statistics in HVAC FDD with time

Number

40 ~
35
30 -
25
20 -
15
10 ~

Paper statistics in HVAC FDD

AHU and
VAV

Packaged Chiller Controller
Air
Conditioner

System

Other

Figure 1-2 Paper statistics in HVAC FDD with system

23



24

1.2.2 Latest Progress

Since 1999, about 30 papers have been published on FDD for HVAC systems.
According to the [IEA ANNEX 34 final report edited by Dexter and Pakanen (2001),
e Twenty-three prototype FDD performance monitoring tools and three validation tools
have been developed.
e Thirty demonstrations have been taken place in twenty buildings.
e Twenty-six FDD tools have been tested in real buildings.
e Four performance monitoring schemes have been jointly evaluated on three
documented data sets from real buildings.

e A test shell has been developed to simplify the comparative testing of FDD tools.

1.2.2.1 Packaged Air Conditioning Systems

Rossi and Braun (1996 and 1997) modified the general FDD supervision
methodology first described by Isermann (1984) for non-critical HVAC system as shown
in Figure 1-3 and developed a statistical rule-based (SRB) FDD technique for vapor

compression air conditioners. This technique uses only nine temperatures and one relative

humidity. Among the ten measurements, ambient air temperature 7, , , return air

temperature 7, , and return air relative humidity @, (or wet-bulb temperature 7' , ) are

considered to be driving conditions. The other seven measurements (evaporating

temperature 1 condensing temperature 7 suction line superheat 7, , liquid line

evap > cond >

compressor discharge temperature 7,

subcooling 7, . » alr temperature rise across the

sc?

condenser AT,

and air temperature drop across the evaporator A7,, ) are used to
specify the system operating state. A steady-state model is used to describe the
relationship between the driving conditions and the expected output states in a normally
operating condition. By comparing the measurements of the output states with those
predicted by the steady-state model, residuals are generated. These residuals are

statistically evaluated to perform fault detection and compared with a set of rules based
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on directional changes to identify the most likely cause of the faulty behavior (diagnosis).
In addition, four fault impact evaluation criteria, ECONOMIC CRITERIA, COMFORT
CRITERIA, SAFETY CRITERIA, and ENVIRONMENTAL CRITERIA, were
developed. Based on estimated impacts, the FDD technique further made a decision on
how to respond to the fault: tolerate, repair ASAP, adapt control, or stop to repair. This
research laid a blueprint for later research, whose strengths and weaknesses were

discussed in Deliverables 2.1.3, 2.1.4 and 2.1.5 and Li & Braun (2003).

Measurements

"| Fault Evaluation
1.  Comfort
Ec onomics

v

Fault Detection 2.
1. Preprocessor 3. Safety
2.  Classifier 4.  Environment

'
! Decision

Fault Diagnosis 1. Tolerate

1.  Preprocessor 2. Repair ASAP

2. Classifier 3. Adapt Control
4.

Stop, Repair

A 4

A 4

v

HVAC Equipment

Figure 1-3 Supervision approach of HVAC&R equipment.

Following this research, Breuker and Braun (1997a, 1998a, 1998b) first identified
important faults and their impacts on rooftop air conditioners through interactions with
industry personnel, and then did a detailed evaluation of the performance of the FDD
technique presented by Rossi and Braun (1997). It was found that by the frequency of
occurrence, approximately 40% of the failure incidents of "no air conditioning" were
electrical or controls related and the other 60% were mechanical. By the service
occurrences, refrigerant leakage (12%) dominated among the mechanical faults while the
occurrences of faults relating to condenser (7%), air handling (7%), evaporator (6%), and
compressor (3%) are similar. By the service costs, the faults related to compressor failure

dominated with 24% of total service costs. Controls related faults were the second-rated



26

class of high cost fault, accounting for 10% of total service costs. Further analysis
showed that, although most failures in hermetic compressors are diagnosed as a failure in
the motor, those failures usually result from mechanical problems such as overload or
liquid refrigerant in the compressor. Based on their survey and analysis, Breuker and
Braun concluded that five fault types should be considered for systems with fixed
expansion devices: (1) refrigerant leakage; (2) condenser fouling; (3) evaporator filter
fouling; (4) liquid line restriction; and (3) compressor valve leakage.

To evaluate the FDD technique presented by Rossi and Braun, the above five
faults were introduced within a 3-ton fixed orifice air conditioner in well-controlled
environmental chambers under various fault levels and cooling load levels. Results
showed that refrigerant leakage, condenser fouling, and liquid line restriction faults could
be detected and diagnosed before an 8% reduction in COP occurred; compressor valve
leakage was detected and diagnosed before a 12% reduction occurred; and the least
sensitivity was evaporator fouling at 20%. These results are compared with the improved
FDD technique later in the current report.

To keep track of the up-to-date research, Comstock, Chen, and Braun (1999)
performed an exhaustive literature review of FDD in HVAC. This review provided a
solid background and guide for later research.

The fault characteristics on a system with a TXV are different from those with a
fixed orifice for which Rossi and Braun originally developed the statistical rule-based
technique. Chen (2000a) modified and evaluated the original FDD technique for a 5-ton
rooftop unit with a TXV as the expansion device. To simplify the FDD method, two
innovative and easy-to-implement methods were proposed (Chen & Braun, 2000b &
2001). The first method, termed the “Sensitivity Ratio Method”, used measurements and
model predictions of temperatures for normal system operation to compute ratios that are
sensitive to individual faults. The second method, termed the “Simple Rule-Based
Method”, dispensed with any on-line model but used performance indices computed from
raw measurements that are relatively independent of operating state but are sensitive to

faults. Both methods were tested using experimental data for different fault types and
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fault levels at different operation conditions. Also, a 7.5-ton unit from the same product
family as the 5-ton unit was used for a robustness test.

Ghiaus (1999) presented a bond graph method for a packaged air conditioning
system. The bond graph is a graph in which nodes represent conservation of energy
equations, and terminal nodes represent either system elements (such as resistance,
capacitance, inertia) or sources. A bond is a power connection between two parts of the
system: A and B. The power is the product of power variables: effort and flow. Effort
represents force, torque, pressure, voltage, or absolute temperature, while flow represents
velocity, rotational frequency, volume flow rate, current, or entropy flow rate. For the air
conditioning system, a thermal bond graph used temperature as effort and entropy flow
rate as flow. Two faults: reducing the heat removed by the evaporator (by slowing the
evaporator fan) and reducing the heat rejected by the condenser (by slowing the
condenser fan) were considered. The advantage of the method is that it could diagnose a
fault without any a priori knowledge of the possible faults and implementation of the
fault inference algorithm is fast and simple due to its recursive nature. However, there are
several drawbacks for this method. Firstly, the method does not consider impact of
variation in driving conditions on the bond graph, so it cannot tell driving condition
effects from faulty effects. Secondly, only two simple faults were considered. If there is a
refrigerant fault such as leakage or flow restriction, the technique described in the paper
could not make the correct diagnosis, due to the assumption of constant refrigerant flow

rate.

1.2.2.2 Other HVAC&R Systems

There is a large body of literature on other HVAC systems, especially variable air
volume (VAV) air handling units (AHU) and chillers. Since this project is focused on
rooftop and other packaged air conditioners, only recent and representative research is
discussed here.

Shaw and Norford (2002) presented two techniques for using electrical power
data for detecting and diagnosing a number of faults in AHUs. One technique relies on

gray-box correlations of electrical power with such exogenous variables as airflow or
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motor speed. This technique was developed to detect and diagnose a limited number of
air handler faults and was shown to work well with data taken from a test building. The
other method relies on physical models of the electromechanical dynamics that occur
immediately after a motor is turned on. This technique has been demonstrated with sub-
metered data for a pump and for a fan. Tests showed that several faults could be
successfully detected from motor startup data alone. While the method relies solely on
generally stable and accurate voltage and current sensors, thereby avoiding problems with
flow and temperature sensors used in other fault detection methods, it requires electrical
data taken directly at the motor, down-stream of variable-speed drives, where current
sensors would not normally be installed for control or load-monitoring purposes. Later
Norford and Wright (2002) presented some results from controlled field tests and
concluded that: the first-principles-based method misdiagnosed several faults and
required a larger number of sensors than the electrical power correlation models, while
the latter method demonstrated greater success in diagnosis (limited number of faults
addressed in the tests may have contributed to this success) but required power meters
that were not typically installed.

Yoshida and Kumar (1999) presented a model-based methodology for online fault
detection for VAV HVAC systems. Two models, Auto Regressive Exogenous (ARX)
and Adaptive Forgetting through Multiple Models (AFMM), were trained and validated
on data obtained from a real building. Based on the results, it was concluded that the
variation of parameters rather than the difference between the predicted and actual output
is more prominent and reflective of a sudden fault in the system. The AFMM could detect
any change in the system but required a long window length and therefore may not detect
faults of low magnitude. The ARX model, on the other hand, could be used with very
short window length and was more robust. Yoshida and Kumar (2001a) further put forth
an off-line analysis based on ARX method. It was concluded that off-line analysis of data
by this model was likely to detect most of the faults. To evaluate the robustness of this
technique, Yoshida and Kunmar (2001b) developed a recursive autoregressive exogenous

algorithm (RARX) to build the frequency response dynamic model for VAV AHUs. It
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was concluded that the method was quite robust against sensor error and could detect and
diagnose several types of faults.

Carling (2002) presented a comparison of three fault detection methods for AHUs.
The three methods were: a qualitative method that compares controller outputs and
model-based predictions, a rule-based method that examines measured temperatures and
controller outputs, and a model-based method that analyzes residuals based on steady-
state models. The author concluded that the first method was easy to set up and generated
few false alarms. However, it detected only a few faults of those introduced. The second
method is straightforward and detected more faults while requiring some analysis during
setup. The third method also detected more faults but it also generated more false alarms
and demanded considerably more time for setup. The third method may have generated
more false alarms because of poor steady-state detector performance and a bad detection
and diagnosis threshold. In this paper, an exponentially weighted variance steady-state
detector was used. Our investigation, which will be discussed in a later part of the report
shows that the variance method, either the exponentially weighted method or fixed
moving window method, is not robust enough and should be used together with a slope
method for steady-state detection.

Dexter and Ngo (2001) proposed a multi-step fuzzy model-based approach to
improve their earlier diagnosis results for AHUs. A computer simulation study
demonstrated that a more precise diagnosis can be obtained and experimental results also
showed that the proposed scheme does not generate false alarms. This method was based
on the use of two kinds of reference models, the fault-free reference model and one of the
reference models describing faulty behavior, to perform multiple-diagnosis. Although
this new technique overcame some weaknesses of the fuzzy method, the difficulty to
summarize or generate fuzzy rules when the number of fault types and levels and load
levels increased could not be eliminated.

In addition to fuzzy methods, several investigators (Lee & Park, 1996, Li & Vaezi
1997) attempted to use artificial neural network (ANN) directly to do FDD for AHUs.
The common feature of ANN FDD is to use an ANN to map the symptoms to the fault

indicators. The network must first be trained to recognize the symptoms of the possible
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faults, which requires tremendous data for different load levels, fault levels and types. For
complicated problems with many fault types and levels and operating conditions, it is
difficult, if not possible, to gather so much data. So recently there seems to be no research
on ANN for HVAC FDD. It should be clarified that although it is difficult to directly use
ANN to do FDD, it is very useful to use ANN to build fault-free reference models for
model-based FDD.

Finally, in the literature of HVAC FDD, some researchers (Salsbury & Diamond
2001, Liu & Dexter 2001) attempted to deal with FDD in control loop problems or use

the information from the controller to do FDD.

1.2.3 Summary of Literature Review

So far, online FDD for HVAC is primarily at the laboratory or field demonstration
stage and commercialization of FDD is a big challenge, since many practical and
economic issues should be addressed. In particular, none of the previous methods can
handle multiple simultaneous faults, which limits their applicability. The SRB FDD
method was one of the first comprehensive techniques applied to packaged air
conditioners and was the most extensively validated through experimental testing.

Significant contributions of this work included:

1. The method was validated by experimental tests and shown to have reasonably
good performance in handling individual faults.

2. The method only requires nine low-cost temperature measurements and one
humidity measurement, which is vital for practical use and commercialization.

3. This work was the first to introduce fault evaluation to HVAC&R equipment FDD
and four fault evaluation criteria were introduced.

4. A detailed simulation model was developed and used to test FDD methods.

5. The method involved the successful conversion of an infinite-classification problem
into multiple single-classification problems.

6. The work laid a blueprint for later research.
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However, several improvements are possible, including:

Removing the assumption that the covariance matrix X for current operation is

current

the same as the normal covariance matrix £ When the system deviates from

normal *

normal operation, it is possible for X to vary significantly fromX

current normal *

Eliminating the independence assumption originally used to simplify the probability
computation, which results in some loss of FDD sensitivity.

Extending the methods to handle multiple-simultaneous faults. Neglecting the
different  fault levels, 3  kinds of faults may have 31
(()+G)+(G)+(G)+(G)=2"-1) combinations while 7 would have 127
combinations, so it is difficult, if it is not impossible, to find so many rules for each
combination.

Extending the methods to achieve system-independence. TXV systems have

different rules from fixed orifice systems and are not handled using the original

SRB method.

1.3 Research Objectives and Approach

1.3.1 Motivation and Objectives

Based on the background literature review, the motivation for the proposed

research can be summarized as:

L.

Packaged air conditioning equipment is an excellent application for FDD. This
type of equipment is used extensively throughout small commercial and
institutional buildings. However, compared to larger systems, they tend to be not
well maintained. For instance, one study showed that more than 60% of residential
systems in California were not properly charged (Levins, Rice, and Baxter, 1996).
Widespread application of automated FDD to packaged equipment will
significantly reduce energy use and peak electrical demand, down time and

maintenance costs.
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2. Existing techniques for online FDD mainly have three drawbacks. First, they are

expensive to apply practically because of requirements for model training and large
computational demand. Second, they have only been tested in the laboratory and
have not considered factors that occur in the field. Third, they can not handle
multiple-simultaneous faults.

No one has performed economic assessments of FDD. It is a complicated problem

that requires field evaluations.

So, a general objective of this research was to develop a practical automated FDD

technique, whose cost is low enough to be affordable for packaged air conditioners and

heat pumps, and whose performance is robust and capable of handling multiple-

simultaneous faults. Another objective was to perform an initial economic assessment of

FDD applied to vapor compression equipment in California.

The biggest technical difficulties associated with development of a practical FDD

method are associated with the economic constraints. To realize the general objective,

some sub-objectives should be achieved.

L.

Only inexpensive hardware can be used, which means that redundant analyses
should be conducted using limited computation and memory resources. This is a
particular problem in fault diagnosis since some faults may have similar symptoms
and more sensors can help in distinguishing them. On the one hand, features as
sensitive as possible should be extracted from limited inexpensive measurements,
and on the other hand, the diagnosis method should be as sensitive as possible to
isolate several faults with similar symptoms and insensitive features. Computation
should be small enough to be implementable within a microprocessor.

Packaged air conditioners are used in diverse weather and climates, so their
behavior will vary drastically. Unmeasured ambient weather conditions, such as
solar radiation, rain, and strong wind on the condenser can impact performance.
Since the mixing chamber is small, outdoor air and return air are not mixed well

and varying damper positions even exaggerate this impact. In addition, since single-



33

point sensor placement is generally used, many measurements often are biased and
noisy. The FDD should be able to handle these practical difficulties.
Multiple-simultaneous faults are common for packaged air conditioners, so the

FDD technique should be capable of handling them.

1.3.2 Methodology

There are two aspects to the general approach proposed for achieving the

objectives: 1) actively create favorable conditions for application of the FDD techniques

and 2) provide improved FDD methodologies to handle multiple-simultaneous faults and

reduced model training requirements.

Because of economic constraints, some practical difficulties are impossible to

overcome passively. For example, it is not possible for a single-point sensor to measure

the mixing box temperature accurately under varying damper position. To reduce

measurement uncertainty and bias and dimensionality, favorable conditions for FDD can

be created proactively as follows:

1.

Schedule application of the FDD methods at special times (e.g. night time) instead
of around the clock to eliminate the unfavorable impact of weather conditions, such
as solar radiation, and occupant intervention.

Override routine controls to fix the speed of the condenser fan and evaporator
blower and damper position. Constant condenser fan and evaporator blower speed
is equivalent to constant air mass flow rate under normal operation condition. Fixed

damper position eliminates the mixing problem with single-point sensor.

From a methodology point of view,

Existing FDD methods were examined to identify their advantages and drawbacks.
The statistical rule-based (SRB) FDD method proposed by Rossi & Braun only
uses low cost sensor and has good performance under laboratory test, so it
provided a start for further improvement.

The FDD problem was analyzed from a control and mathematical point of view.

From the control point of view, decoupling is an efficient way to handle
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interactions among multiple factors. From the perspective of mathematics,
transformation could result in decoupling.

The underlying physics for HVAC&R equipment were utilized wherever possible.
By analyzing the different faults deeply, the commonness and characteristics of
faults and decoupling features could be found. Deep understanding of the physics
of the system also contributed to development of models (virtual sensors) that can
be used to estimate some measurements that would require expensive
measurements.

Manufacturers’ rating data such as compressor maps, TXV maps and system
capacity rating data were used extensively, because they are not only readily
available at no cost, but also are generic and reasonably accurate.

The focus was on development of generic FDD methods for packaged air
conditioners. Unlike a critical FDD system which is engineered for a specific large
system, FDD for packaged equipment needs to be adaptive and generic (system-
independent) for the same type of system, or at least for similar models from the
same product family. The application of generic FDD methods would reduce the

per-unit costs.

Both laboratory and field data were used to validate the proposed techniques as

follows:

1.

Field setups were used to investigate the impact of practical factors on FDD
application.

Laboratory setups will be used to test overall performance of FDD methods in a
controlled environment with individual and multiple-simultaneous faults artificially

imposed at known levels.

Field data were also used to evaluate the impact of faults on system performance

and to perform initial economic assessments for FDD.
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2 DATA SOURCES USED FOR EVALUATION AND DEMONSTRATION

2.1 Overview

There is a lot of test data available from earlier research projects performed at
Herrick laboratories for the purpose of validating FDD techniques and models for
packaged air conditioning equipment. Data taken by Breuker (1997b), Chen (2000), and
Harms (2002) were used to validate the FDD techniques presented in this report.

The earlier laboratory data sets do not include some factors that would be
experienced in the field. Examples include ambient weather conditions that appear in the
field but are typically not measured and were not considered during laboratory testing,
such as solar radiation, rain, and wind. These factors can influence the performance of the
unit through an impact on the condenser heat transfer characteristics. Also the damper
position changes the air flow rate, while the laboratory experimental data was collected
with a constant air flow rate. Since the mixing chamber is small, outdoor air and return
air are not mixed well and different damper positions also have some impact on mixing.
If not properly considered, changes in damper position could lead to classification errors.

The impacts of these factors are unknown and deserve further research in a field situation.

2.2 Previous Data Sources

2.2.1 Mark Breuker’'s Data

Two types of laboratory data were collected by Breuker (1997b) under controlled
conditions for a 3-ton Carrier rooftop air conditioner with a short-tube as the expansion
device. One is normal operation data, which were used to build a normal operation model,
and the other is faulty operation data, which were collected under various simulated faults

and used to evaluate FDD performance.
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2.2.1.1 Normal Operation Data

The normal operation data set was obtained at a number of controlled normal
operating conditions. There are two sets of normal operation data. A large set of data was

gathered at combinations of indoor dry bulb temperatures (7,,) of 70, 73, 76, 79, and 82
F, indoor wet bulb temperatures (7,, ) of 33, 38, 61, 64, and 67 F, and ambient
temperatures (7, ) of 60, 70, 80, 90, and 100 F. A smaller set of data was gathered at

indoor dry bulb temperatures of 71.3, 74.3, 77.3, and 80.3 F, indoor wet bulb
temperatures of 36.3, 39.3, 62.3, and 63.3 F, and ambient temperatures of 63, 73, 83, and
93 F. The conditions were selected because they completely cover the normal comfort
region defined by ASHRAE (1993).

To ensure that there were no faults developing in the test unit during the test
period and to quantify experimental noise which is present in the operation of the test unit,

=83F, T, =76F, T

wb

a test condition at 7

b = 61 F was retested every few days. The
results of this repeatability test for all of the measurements used by the FDD technique
are shown in Table 2-1. Because of the smaller heat capacity associated with vapor (as
compared with liquid), the noisiest measurements are the suction superheat and hot gas

temperatures.

Table 2-1 Repeatability analysis during steady-state model testing

( dlzgtaF) Tf—’WP Tsh T, dis Tcond Tsc AT, ca AT, ea

Mean | 43.76|8.42| 193.11 | 108.69 | 7.03 | 11.72 | 19.14

Std. Dev. | 0.39 [1.73| 1.23 040 [0.23] 0.09 | 0.17
Spread 1.21 [4.80] 4.04 1.28 10.60| 0.26 | 0.64

2.2.1.2 Faulty Operation Data

In addition, five types of artificial faults were introduced at different fault levels
and the unit was tested at different load levels in order to evaluate the performance of the

FDD technique.
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The fives types of faults are refrigerant leakage, compressor valve leakage,
condenser fouling, evaporator fouling and liquid line restriction. Each fault was
introduced at four or five different levels (see Table 2-2) and tested at five different load
levels (20%, 40%, 60%, 80% and 100%). In all, there are 120 sets of fault data available
to test the proposed FDD method. For each of the different load levels, the unit was on
for different amounts of time. The total cycle time was held constant at 43 minutes and
the on time was varied for the different load levels. For example at 20% load, the unit ran
for 9 minutes and was off for 36 minutes. Two consecutive transient start-up responses

were generated and data were recorded at 3-second intervals at each of the conditions and

fault levels.

Table 2-2 Fault levels introduced to different faults

Fault | Refrigerant | Liquid-line Compressor Condenser | Evaporator
Level | Leakage Restriction | Valve Leakage Fouling Fouling

1 0 0 0 0 0

2 3.5% 5.0% 7.0% 14.6% 12%

3 7.0% 10% 14% 29.2% 24%

4 10% 15% 19% 41.4% 35%

5 14% 20% 28% 56.1% NA

2.2.2 Chen’s Data

Similar to Breuker’s data, two sets of laboratory data were collected under
controlled conditions for two packaged York rooftop air conditioners with TXV as the
expansion device: a 5-ton one stage system and a 7.5-ton two-stage system by Chen
(2000). In addition to the five faults considered by Breuker (1997b), two more faults,

refrigerant overcharge and non-condensable gas, were simulated.

2.2.3 Todd Harms’ Data

Although the data collected by Todd Harms were originally used for refrigerant

charge inventory research, they are useful to test modeling approaches and refrigerant
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charge faults for TXV RTU systems. Three Trane RTUs (a 2.5-ton split system, a 5-ton
packaged system and a 7.5-Ton split system) were tested under four operation conditions

(see Table 2-3) with various charge levels.

Table 2-3 Environmental conditions.

Test Toutdoor, Tindoor, Taew point,
Condition °C °C °C
A 35.00 26.67 15.77
B 27.78 26.67 15.77
C 27.78 26.67 <3.06
HT 48.89 26.67 15.77

2.3 Field Test Facilities

All the field-sites in California are small commercial buildings that utilize
packaged air conditioning and heating equipment. The criteria used for selecting the
field-sites included: 1) building occupancy type and size; 2) HVAC system installed, and
3) climate region. The types of building include smaller retail stores, restaurants and
modular schoolrooms. The HVAC systems installed include different rooftop and wall
mounted units with different capacities and manufactured by York, Trane and Bard. The
climates include two different macroclimate types: coastal and inland. Table 2-4
summarizes information about all sites (refer to Deliverables 2.1.1a & 2.1.1b for details).

The Purdue field setup is meant to mimic field setups in California in order to aid
in the identification of installation and operational problems locally. In addition, this
setup allows us to test alternative sensors and to artificially introduce faults, both of
which would be logistically difficult to perform in California (refer to Deliverables 2.1.1a

& 2.1.1b).
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Occupation | Climate |y | Cap | Stage |y g0 RTU/COMP Model No.
Type Location (Tons) | No.
DI1EE 060 A23
Storage room |Inland Purdue| York 5 1 1 Copeland Model ZR37K3-TF3
Inland 1
Woodland 2 WH421-A
Schoolroom == " | BardHP 3.5 ! 1 CopelandRecip. CR42K6-PFV
Oakland 2
D3CG120N20023MKD
Inland 10 2 WattAve | g i ctol Inertia H23A36QDBLA
Sacramento Bradsha DICGO072N07923ECC
McDonalds York ‘ . S1aW 1 CopelandScroll ZR72KC-TF3
Milbitas D1CG072N09923C
Coastal P CopelandScroll ZR72KC-TF3
Oakland 2 ) Castro D4CG130N16323MDB
Bristol Inertia H26A72QDBLA
6.25 3 WCD073C30BBC
Inland 1 ;
Rialto 7.5 > WFD090C30BBC
4
Walgreens Trane HP =3 1 WSCO60A3R0A0THOA
Coastal 6.25 | g WCD073C30CBC
Anaheim 1
7.5 5 WCD090C30CBC
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3 IMPROVED SRB FDD METHOD

As depicted in Figure 3-1, a rooftop unit (RTU) can be represented as a black-box,
which is driven by faults, disturbances and overall system driving conditions, including

evaporator inlet air temperature 7, and relative

aie ?

condenser inlet air temperature 7

aic ?

humidity ¢

aie

and outputs overall system state variables, including evaporator

temperature 7, , suction line superheat 7, , discharge line temperature 7),, condensing

evap

evaporator air temperature difference AT

ea’

temperature 7, ,, liquid line subcooling 7,

condenser air temperature difference A7, , and liquid line pressure drop AP, . The

objective of the FDD technique is to infer some of the inputs from the outputs. There are

two ways to fulfill this.

Rooftop Unit System

Overall Driving Conditions

T

aic > * aie” ¢aie

Compressor Valve
Leakage

Low Refrigerant Charge

Condenser Fouling

Refrigerant Overcharge

Liquid-Line Restriction

Non-Condensable Gas

Evaporator Fouling

v
Overall System State Variables

Disturbances

Figure 3-1 Interactions of Rooftop Unit System
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The SRB FDD method determines which factors contribute to the current
operation state directly from overall state variables. This method uses normal state
models to predict the normal operation states according to the overall driving conditions
and generates residuals to decouple the interactions between driving conditions and faults,
and further uses statistical analysis to further decouple the actions from disturbances.
This chapter summarizes an improved SRB FDD method (refer to Deliverables 2.1.3 &
2.1.4 or Li & Braun (2003) for details). However, this method leaves the couplings
among the different faults untouched, so it cannot handle multiple-simultaneous faults. A

method for handling multiple-simultaneous faults is described in the next chapter.

3.1 Limitations of the Original SRB FDD Method

Although the SRB FDD method proposed by Rossi and Braun (1997) has
reasonably good performance, there are two disadvantageous assumptions which impact
FDD performance. One is that the covariance matrix of the probability distributions for
all faulty operation is constant and the same as that of normal operation. This assumption
is important for this method, because it is difficult to obtain the covariance matrix for
different faulty conditions. When implementing fault diagnosis, a further assumption, a
diagonal co-variance matrix, is made. The diagonal assumption greatly simplifies the
calculation of the probabilities associated with the occurrence of each of the faults,
changing the problem from the integration of a 7-dimensional probability density
function into a problem of seven 1-dimensional integrals. The first assumption is
difficult to validate and the second one, a diagonal co-variance matrix, leads to some loss
in FDD sensitivity. Deliverables 2.1.3 & 2.1.4 and Li & Braun (2003) evaluated the
second assumption using Monte-Carlo Simulation. Section 3.2 summarizes the improved

SRB FDD method and section 3.3 provides some comparisons with the original method.
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3.2 Improved SRB Approach

Figure 3-2 depicts the overall structure of the SRB FDD method presented by
Rossi and Braun (1997). Data (including system driving conditions and state variables)
gathered from HVAC equipment are fed into the preprocessor, which includes a steady-
state model and a preprocessor for the steady-state detector. The steady-state detector
determines whether the system is considered to be at steady state, a necessary condition
for the fault detection and diagnosis steps, and provides a binary output to a switch (SW),
which ignores the output of the detection and diagnostic classifiers unless the system is in
steady-state. The steady-state model uses the measured driving conditions (ambient dry-
bulb temperature, mixed air temperature and wet-bulb) to predict state variables under
normal operation (evaporation temperature, suction superheat, condensing temperature,
condenser subcooling, compressor hot gas temperature, condenser and evaporator air
temperature differences). The residuals between current measured and predicted normal

operating states are used by fault detection and diagnostic classifiers.

Driving Plant "
Conditions - ; e ; easurements
> Air Conditioning Unit >
T
b T
o v v evap
ra Tsh
wa Sensors Sensors T
: cond
Preprocessor | y Tec
Steady Thg
State —>® |?teady State AT,
Model reprocessor AT,
Residuals
Classifier
Diagnostic Fault Steady
Classifier Detection State
¢ Classifier Classifier
< I
SW | ¢
I
\

Figure 3-2 Structure of the SRB FDD method
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The following sections describe specific improvements that have been made with
respect to the steady-state detector, steady-state models, fault detection classifier, and

diagnostic classifier.
3.2.1. Steady-State Detector

Two kinds of detection methods, a slope method and two variance methods, have
been proposed to decide whether the system has approached steady-state (see Breuker
(1997a)). If the variance threshold is set low enough, variance methods can filter out data
with both deterministic and random variations. Although the slope method can filter out
data with deterministic variations, it has difficulty distinguishing data with pure large
oscillating magnitude from those with pure small oscillating magnitude. The combination
of the slope and variance methods was proposed to improve the overall performance.
This combined steady-state detection method can filter both deterministic and random
variations at reasonable threshold and therefore is more robust (see Deliverables 2.1.3 &

2.1.4 and Li & Braun (2003)).

3.2.2 Steady-State Models

Breuker and Braun (1998b) used low-order polynomial (i.e, 1* and 2"order)
models to predict steady-state operating states for normal operation. The advantage of
low-order models is that relatively little data is required for training and the models work
reasonably well to extrapolate beyond the range of training data. However, higher-order
models can provide a better representation when sufficient training data are available. Li
and Braun (2002) proposed a hybrid model that combines a low-order polynomial with a
general regression neural network (GRNN). A GRNN is a memory-based network that
incorporates a one-pass learning algorithm with a highly parallel structure (Donald, 1991).
The low-order polynomial model is fit to the training data and the GRNN model is
trained using residuals between the polynomial predictions and the data. Li and Braun

(2002) demonstrated that in comparison to the low-order polynomial models, the hybrid
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model has better performance in predicting states that are within the range of training

data, with no penalty for extrapolating beyond the range.

3.2.3 Normalized Distance Fault detection Classifier

Deliverables 2.1.3, 2.1.4 & 2.1.5 and Li & Braun (2003) present details of a
normalized distance fault detection classifier that can be used for both individual and

multiple-simultaneous faults. The classifier evaluates the following inequality.

@,:Normal

-1 < 251
i V= Mo) (2 {1~ a),m} (3-1)

w,:Faulty

(Y _Mnormal)Tzn

where (Y -M,, )%, ~(Y-M,,. ) is the normalized distance, (y*)™"{(1-a),m}

normal

is the threshold of normalized distance for normal operation, (y*)™'{,} is the inverse of

the chi-square cumulative distribution function, ¢ is the false alarm rate, and m is the
degree of freedom or dimension which is equal to the number of chosen state variables.

Due to modeling error M, . is not exactly zero, so equation (3-1) takes modeling error

into account to statistically evaluate whether Y is zero or not.
The above fault detection scheme can be illustrated using Figure 3-3. The residual
distribution of normal operation can be characterized in terms of the covariance matrix

x . and mean vector M

norma

, and depicted in the residual space plane as in Figure 3-3.

In the residual space plane, any operating states (points) outside the normal operating
region are classified as faulty while those inside the normal operation region are
classified as normal. The normal operating ellipse is the fault detection boundary.
Practically, normal operation information, such as the mean and covariance
matrix, is more accessible and more reliable, compared to faulty operation data. In
addition, this scheme is intuitive in that the opposite of normal operation is abnormal
operation. If the current operation point is not inside the normal operation region at a
certain confidence according to reliable prior information, it should be classified as faulty

operation. Another advantage is that the fault detection decision is based on individual
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points rather than on a distribution, so it is more computational efficient for online

application.

Residual-2
o Fault Detection
o ° Boundary
o
(] 0@ .
° Residual-1
° °
(<]

Normal ®
Operation Region ° o

Figure 3-3 Fault detection classifier scheme for a 2-dimensional case

3.2.4 Fault Diagnosis

The SRB FDD method relies on a set of diagnosis rules to do fault diagnosis.
Based on the fault diagnosis rules, fault diagnosis classifier separates the detected faults

from the possible fault candidates.

3.2.4.1 Fault Diagnosis Rules

Fault diagnosis rules (see Table 3-1) can be expressed as positive and negative
changes in residuals, so that each fault type corresponds to a unique quadrant of a multi-
dimensional residual space. To decide which fault is the most probable is equivalent to
identifying which quadrant the current measurement belongs to. Combined with the

normal operating ellipse, coordinate axes form the fault diagnosis boundary (see Figure

3-4).
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Table 3-1 Fault diagnosis rules

Fault typ ¢ 71@vap T;h ];ond 7;0 T;Lg AYTca AY;a

Refrigerant leakage | - + - - + - -

Comp. Valve Leak | + - - - - - -

Liquid Restriction - + - + + - -

Condenser Fouling | + - + - + + -

Evaporator Fouling | - - - - - - +
Residual-2

Fault quadrant-2 Fault quadrant-1

° Fault diagnosis
o o Boundary
Normal e o ° .° o @ o
Operation Region © °© e © o ®
e ° ° P
° ° - Residuyl-2
°
«——Fault Detection
8 o Boundary
() normal % ) ° ®
Fault diagnosis e R
Boundary ° ° o

Figure 3-4 Fault detection and diagnosis boundaries

3.2.4.2 Simple Distance Fault Diagnosis Classifier

To eliminate the independence assumption and improve fault diagnosis
performance, a simple distance fault diagnosis classifier, which does not require
integration of the probability distributions, was developed and validated.

This method is briefly illustrated in Figure 3-5 using a two-dimensional case.

Based on the predefined fault points (i.e., F; and F,) corresponding to the fault quadrants

(I and II), the distance ratio of the smallest distance to the second smallest distance (as to
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[P
[P

less than a preset threshold A, then a fault corresponding to the minimum distance will

current operation point F, ratio,, = ) is calculated, and when the distance ratio is

be indicated. In Figure 3-5, the fault point with the minimal distance for A is F, while
for P, is F), and if the distance ratio is lower than a preset threshold, fault II would be
indicated for F, while fault I for P,.

The performance of the method is good in that the distance ratio monotonously

decreases with increasing fault level (£, has the same fault level as P, and P, but a higher
fault level than P, and lower fault level than P, and P,), and is relatively insensitive to
the choice of parameters ¢ (P, can be classified correctly in Figure 3-5) and different

operating conditions over a wide range (refer to Deliverables 2.1.3, 2.1.4 & 2.1.5 and Li

& Braun (2003) for details).

A A

l\?ro;jel ResidL}aI-Z True Residual-2

Fault Quadrant Il % Fault Quadrant |

F,(c,c)

{ Model Residual-1

-

»

True Residual-1

Normal Operation
Region

Figure 3-5 Distance method for fault diagnosis
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3.3 Results

Table 3-2 gives comparative results for the two methods in terms of FDD
sensitivity. Compared with the results obtained by Breuker and Braun (1998b), the
improved SRB FDD method has superior performance. Breuker and Braun (1998b)
presented results in terms of a “1* Detected” and “All Detected” level. The “1* Detected”
level is the level at which the fault was first successfully detected and diagnosed
throughout the data set. The “All Detected” level is the level at which the fault was
detected and diagnosed during all steady-state operating conditions. As an example, the
“1* Detected” refrigerant leakage fault level is 3.5% for the improved method and 7.8%
for the original SRB method, whereas the “All Detected” refrigerant leakage fault levels
are 7% and 9.5%, respectively. Similar results occur for the other faults. The results of

“1% Detected levels” that are below the lowest level of

Breuker and Braun do show some
fault that was introduced. This is because their results were calculated by interpolating
the impact of the fault level. This was not done for the current study. For a direct
comparison without interpolation, the original SRB results should be rounded up to the
next discrete fault level (shown in parenthesis for each fault type). For example, the “1*
Detected” refrigerant leakage fault level for the original SRB, 7.8%, would be rounded up
to the next discrete fault level, 10%. With this fairer comparison, the improvements in

performance with the new method are more dramatic.

Table 3-2 Performance comparison of previous and improved FDD method

Refrigerant | Liquid-line | Compressor | Condenser fouling | Evaporator
FDD leakage restriction |valve leakage|(14.6,29.2,41.4,56.1)% fouling
results |(3.5,7,10,14)%(5,10,15,20)%|(7,14,19,28)% (12,24,35)%
Al | 1Y Al |1 | Al 1" All 1" | All
Original
SRB 7.8 | 95 | 62 | 81 | 65| 142 11.6 15.1 11.1{30.9
[mproved
SRB 3.5 7 5 5 7 7 14.6 14.6 12 | 12
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4 A DECOUPLING-BASED FDD TECHNIQUE

Although the improved SRB FDD method has good performance for individual
faults, it requires measurements over a wide range of conditions for training reference
models. The development of these models can be time consuming and costly.
Furthermore, SRB FDD methods can only handle individual faults. This section
summarizes a new method, termed the decoupling-based FDD method, which reduces
engineering and installed costs for FDD and handles multiple-simultaneous faults. This
methods are evaluated using both laboratory and field data. Additional details of the

method and evaluation are given in Deliverable 2.1.5.

4.1 Approach

To handle multiple-simultaneous faults, the interactions among different faults
should be decoupled (refer to Figure 3-1). That is, if one independent feature, which is
impacted only by one fault, can be found for each individual fault, then multiple-
simultaneous faults are decoupled. For a linear system or some special nonlinear systems,
a transformation can be found to diagonalize a transfer function matrix to decouple the
system if a detailed system physical model is available. However, to obtain such a
detailed physical model taking faults into account for a rooftop unit system is extremely
difficult. Another way to decouple the system is to unfold the black-box representing the
rooftop unit system to view it from a microscopic point of view and find some
independent features with physical meaning for component-level faults, and isolate
service faults from operation faults immediately after service is done and when the
system stops. There is an important and practical restriction for the independence features.
They should be able to be expressed as functions of low-cost measurements such as

temperature and pressure.
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In order to extend the easily-implemented SRB fault diagnosis idea to handle
multiple-simultaneous faults, Deliverable 2.1.5 proposed a decoupling-based method,
which decouples the interactions between the transformed FDD features Z and faults X
(see Equation (4-1)). That is, it makes each entry of the feature vector Z only correspond

to unique fault entries of the fault vector X and vice versa.

X (4-1)

A

Based on the decoupled features, the SRB FDD technique can be applied to
handle multiple-simultaneous faults. That is, the n — dimensional FDD problem has been
decoupled to be n 1—dimensional SRB FDD problems. In addition, the decoupling-
based diagnosis method simplifies fault detection from a high-D problem to n 1-D ones.

Equation (3-1) boils down to the following n 1-D equations,

,:normal

_ 2
(Zi lili,nurmal ) < (ZZ )_l {(1 _ a)’l} (4_2A)
O-i normal >
> ,: faulty
or
‘ ,:normal
Z[ /’l[,nm‘mal < N—l {(1 _ 0{),0,1} (4-2B)
O-i,normal ,: faulty

where, (y°)”' {,} is the inverse chi-square cumulative distribution function, N ' {,} is the
inverse normal cumulative distribution function, o is the false alarm rate, and
i=12,---,n.

Fault diagnosis automatically is achieved without any extra computation

immediately after fault detection is finished, so the fault diagnosis classifier is not

required.
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This approach overcomes the drawback of the SRB diagnosis method and handles
multiple-simultaneous faults diagnosis and becomes more generic and system-
independent and does not require complicated rules, which depend on the system.

The above approach is based on decoupled features. Mathematically, there exists
an infinite number of decoupled features, but for HVAC systems only those with intuitive
physical meaning and those that are readily available (low-cost) are practical. Deliverable
2.1.5 develops a methodology or guidelines to find these kinds of features. This
methodology or guideline first classifies the RTU faults from two criteria. From
microscopic and macroscopic points of view, the seven faults can be divided into two
classes: component-level and system-level faults, which are shown in Figure 4-1. If
classified from the view of fault cause, they can be divided into: operational and service

faults.

ROOFTOP UNIT FAULTS
[

A4

SYSTEM-LEVEL FAULTS

Figure 4-1 Taxonomy of Rooftop Faults
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The characteristic of component-level faults is that their source impact can be
confined to a component and this source impact is independent of other faults locally. So,
the independence features for individual component-level faults can be found by
investigating their source impacts. The independence features for service faults can be
found by investigating their impact when the system stops.

Deliverable 2.1.5 described the details about how to decouple the RTU faults
based on the taxonomy. Figure 4-2 summarizes the decoupling scheme for component
and system level faults. Equation (4-3) formulates the decoupling scheme and results of
all the rooftop faults. It can be seen that the matrix L of equation (4-3) is sparse and

lower triangular. The algorithm described in Deliverable 2.1.5 can solve this unilateral

decoupled problem.
( NonCond
E CondFoul
=
E
_5: < CompLeak
=
[P]
g EvapFoul
e
5
O LL-Restr

\

S, ._.::_::_:..-._u._l.'._l.-._l.-._'lf-._::-z:_-_:-;;;. System State
RefUnder — Low S Residuals (SSR)
Refleak —», Charge Or

ATy =T, T,

sh—sc

RefOver

System-Level Faults

Figure 4-2 Decoupling Scheme of Rooftop System Faults
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AT, I, | NonCond ]
AT, [y CompLeak
AZ.P,, gy = L, [, LLRestr (43)
Am,, Ly, Ly CondFoul
Am,, ls, Lss EvapFoul
| SSR/T,,_,. | o lo ls la ls L || RefCharge |

where AT, , is the temperature difference between the condensing temperature and
saturated temperature based on condensing pressure, Arz,, is condenser air mass flow
rate residual, As,, is evaporator air mass flow rate residual, A’P, is the liquid line

pressure drop residual, SSR is the system state residual, and AT,  is the difference

h—sc

between suction line superheat and liquid line subcooling.
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4.2 Results

In order to validate the decoupling-based approach, three cases studies are
provided in this section. Section 4.2.1 presents an initial case study to validate the
decoupling scheme for a 3-ton fixed orifice rooftop unit. Section 4.2.2 presents an FDD
demonstration of multiple-simultaneous faults for a 5-ton TXV rooftop unit installed at

the Purdue field site. Section 4.2.3 provides results for California field sites.

4.2.1 Case Study of Decoupling Rooftop Unit Faults

Data gathered by Breuker (1997b) under controlled conditions in a laboratory
were used to evaluate the decoupling scheme for a system with a short-tube expansion
device. As described in Chapter 2, five types of individual faults were artificially
introduced at different fault levels and the unit was tested at different load levels with the
unit cycling on and off. Although these five kinds of faults are individual instead of
multiple-simultaneous faults, they can be used to test whether the proposed decoupling

features for each fault are independent of fault and load levels and all other faults.

4.2.1.1 Compressor Valve Leakage

Figure 4-3 illustrates the discharge line temperature residuals for different fault
types with different fault and load levels obtained using predicted compressor power
consumption and predicted refrigerant mass flow rate. It can be seen that only the
compressor valve leakage fault has a significant influence on the discharge line
temperature residual. The small fluctuations with other faults are caused by measurement
noise, system disturbances and modeling error. So, the coupling between compressor
valve leakage and other faults is broken successfully using the discharge line temperature
residual.

However, there is still some room for improvement. For example, the discharge
line temperature residual is impacted a little by large liquid-line restrictions. This may be
caused by high suction line superheat at severe liquid-line restrictions, which results in a

lower value of the compressor volumetric efficiency. However, this can be improved by
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improving the compressor model performance and finding some practical means to tune
it, which will also eliminate the impact of other faults on the discharge line temperature

estimation.

40

—s—evapfoul —a—condfoul —x—refleak —x—Illrestr —e—compnv

20

Loadlevel 1 i Load level 2 Load level 3 | Loadlevel4 | Loadlevel5

Discharge Line Temperature
Residual (F)

12 345 12 345 12 345 12 345 12 3 45
Fault Level

Figure 4-3 Decoupling compressor valve leakage fault using estimated compressor power
measurement and estimated refrigerant mass flow rate

4.2.1.2 Condenser Fouling Decoupling

Figure 4-4 gives the condenser air mass flow rate estimated using a virtual sensor
under different fault types with different fault and load levels. In order to show the
potential of the decoupling scheme, this virtual sensor uses the actual refrigerant mass
flow rate measurement. From Figure 4-4, it can be seen that the condenser air mass flow
rate is only influenced by the condenser fouling fault. The reduction of condenser air
mass flow rate is proportional to the condenser fault level and independent of load levels
and other faults. So full decoupling between condenser fouling fault and other faults is

achieved.
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Figure 4-4 Decoupling condenser fouling fault using measured refrigerant mass flow rate

A refrigerant mass flow rate meter is too expensive for this application, so it is
estimated using compressor map data. Figure 4-5 shows the condenser mass flow rate
estimated using a refrigerant mass flow rate estimate under different fault types with
different fault and load levels. It can be seen that the condenser mass flow rate estimate is
influenced simultaneously by condenser fouling and compressor valve leakage with
inverse directions. The dependence on compressor valve leakage is caused by errors in
refrigerant mass flow rate prediction, since the compressor map was built using normal
compressor data. When there is a compressor valve leakage fault, the compressor model
over-estimates the refrigerant mass flow rate and this results in an over-estimate of
condenser air mass flow rate. So, the coupling from compressor valve leakage to
condenser fouling is not broken if the refrigerant mass flow rate is estimated using the
compressor map. However, this would not impact the FDD application, because the
coupling from condenser fouling to compressor valve leakage has been broken already.
In other words, unilateral or partial decoupling can be achieved even if refrigerant mass

flow rate is estimated using a compressor map.
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Figure 4-5 Decoupling condenser fouling fault using estimated refrigerant mass flow rate

4.2.1.3 Evaporator Fouling Decoupling

To quantify the fault levels simulated in this experiment, evaporator air mass flow
rate was indirectly calculated from the fan curve using the measurement of the change in
differential pressure across the evaporator fan. Figure 4-6 shows the evaporator air mass
flow rate measurements. From this figure, it can be seen that in addition to an outlier
point the actual evaporator air mass flow rate has a small variation for different fault
types and different fault levels, and the fluctuation band shifts up with the increasing load
levels. The outlier point may be caused by experimental error. The small shifting
fluctuation with increasing load level may be caused by the variation in the air density at
different load levels, and different fault type and fault level also have some influence on

the air density. However, this small fluctuation would not change the decoupling feature.
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Figure 4-6 Decoupling evaporator fouling fault using measured evaporator air mass flow
rate

Evaporator air mass flow rate is not typically measured. Figure 4-7 illustrates the
evaporator air mass flow rate estimated using a virtual sensor under different fault types
with different fault and load levels. This virtual sensor used the measured refrigerant
mass flow rate. From this figure, it can be seen that the existing shifting fluctuation is
amplified a little, which may be caused by the systematic error in the measurement of
evaporator air inlet and outlet conditions. However, this still does not change the
decoupling feature and the change of evaporator air mass flow rate estimate is still
dominated by evaporator fouling and also it can be alleviated by improving the

measurement scheme.
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Figure 4-7 Decoupling evaporator fouling using measured refrigerant mass flow rate

Figure 4-8 illustrates the evaporator air mass flow rate estimated using estimated

refrigerant mass flow rate. As expected, the coupling from compressor valve leakage to

evaporator fouling is not broken if refrigerant mass flow rate is estimated by compressor

map. For the same reason as condenser fouling, unilateral decoupling is sufficient for

FDD application.
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Figure 4-8 Decoupling evaporator fouling using estimated refrigerant mass flow rate
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4.2.1.4 Liquid-Line Restriction Decoupling

Figure 4-9 illustrates the measured liquid-line pressure drop under different fault
types with different fault and load levels. It is obvious that the liquid line pressure drop is
only influenced by the liquid-line restriction fault. The decoupling between liquid-line
restriction faults and all other faults is broken successfully.

However, it is not practical to measure the inlet and outlet pressures for FDD.

The outlet pressure P,, should be estimated using a virtual sensor. Figure 4-10 shows the

decoupling results using estimated P, and measured P,. It can be seen that the accuracy

‘p

of the P, estimate is within +5psi. In addition, the measurement of 7; is not available,

so Deliverable 2.1.5 proposed two estimation techniques. Due to limited data, only the

second technique, assuming constant pressure drop across the condenser, was tested.

Figure 4-11 shows the predict pressure drop between P, and P, . It seems that a

constant pressure drop of 25 psi in the condenser can be assumed to estimate 7.
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Figure 4-9 Decoupling liquid-line restriction using measured pressure drop
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Figure 4-10 Decoupling liquid-line restriction using estimated pressure P,, and measured
B
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Figure 4-11 Decoupling liquid-line restriction using estimated pressure drop
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4.2.1.5 Refrigerant Leakage Decoupling

Figure 4-12 shows the decoupling feature of AT, _ for the different fault and

load levels. It can be seen that all the faults have impacts on this feature. However, since
the refrigerant fault does not have an impact on the other decoupling features and the
value of this feature is proportional to refrigerant leakage fault levels, the unilateral
decoupling is achieved successfully.

It should be pointed out that this feature monotonically decreases slightly with
load level. This is expected, because no model is used for this feature and a fixed orifice
can not compensate for load level variations very well. Although these impacts are a little
larger than those of a TXV system, they are still reasonably small. Anyway, it is still

advisable to improve this feature furthermore by modifying it using load level.
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Figure 4-12 Decoupling refrigerant leakage faults using AT,
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4 2.2 Purdue Field Emulation Site’s Demonstration

To demonstrate the decoupling-based fault detection and diagnosis approach,
multiple-simultaneous faults were artificially introduced to the Purdue field emulation
site, which has been described in a previous deliverable.

The decoupling-based fault detection and diagnosis approach was applied to the
demonstration. To make the demonstration intuitive, a movie was made to show the
whole process. There are four windows shown in the movie: Fault Detection and
Diagnosis Window, System Performance and Safety Degradation Window, Fault
Simulation Window, and Fault Detection and Diagnosis Window (see Figure 4-13). The

following sections describe all the windows in detail and present some sample results.

FDD Demo for Multiple-Simultaneous Faults

Fault Detection and Diagnosis Window Field Fault Simulation Window
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Figure 4-13 Illustration of Demo Movie
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4.2.2 1 Field Fault Simulation Window (FFSW)

For easy access, four faults were artificially introduced: refrigerant low charge,
condenser fouling, liquid line restriction and compressor leakage. Since it is not accurate
to discharge refrigerant using the recovery system, the refrigerant low charge fault was
simulated by charging less refrigerant to the system before running rather than
discharging some refrigerant during operation. The fault simulation procedures were
divided into the following two stages: added four faults one by one and removed faults

one by one. Figure 4-14 illustrates the timeline of the fault simulation.

Refrigerant Low-charge Refrigerant Low-charge Refrigerant Low-charge
Condenser Fouling Condenser Fouling
Liquid-line Restriction
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Figure 4-14 Timeline of the fault simulation in minutes.

The following steps describe the addition of faults:
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Evacuated the system, and then charged the system up to eighty per cent of nominal
refrigerant charge. The system ran for half an hour to reach steady state and then
data were logged.

After logging half an hour of low charge data, the condenser fouling fault was
added, by covering thirty per cent of condenser area using paper. At this time, there
were two simultaneous faults in the system: refrigerant low charge and condenser
fouling.

Half an hour later, a liquid line restriction fault was introduced by closing the
restriction valve until a twenty psi pressure drop was caused. Three faults existed in
the system simultaneously: refrigerant low charge, condenser fouling and liquid line
restriction.

Half an hour later, a compressor leakage fault was introduced by opening the
compressor bypass valve to let fifteen per cent of refrigerant mass flow rate bypass
the compressor. At this time, four faults existed simultaneously in the system:
refrigerant low charge, condenser fouling, liquid line restriction, and compressor
leakage.

The following steps describe the removal of faults,

After the system ran for half an hour under four faults, the paper covering the
condenser was removed. There existed three simultaneous faults in the system:
refrigerant low charge, liquid line restriction, and compressor leakage, which is a
different combination than step three.

Half an hour later, the liquid line restriction fault was removed by fully opening the
liquid line restriction valve. At this time, refrigerant low charge and compressor
leakage existed in the system, which is a different combination than step two.

Half an hour later, the compressor bypass valve was closed to remove compressor
leakage fault. There was only refrigerant low charge fault in the system.

Finally, half an hour later, the system was charged up to a nominal refrigerant level.

The system was supposed to run normally.
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4.2.2.2 Fault Detection and Diagnosis Window (FDDW)

This window plots the normalized fault indicator for four individual faults using
color bars: refrigerant low charge (Low-Charge), condenser fouling (Cond-Foul), liquid
line restriction (LL-Restr), and compressor leakage (Comp-Leak).

The normalized fault indicator is the ratio of the current feature value to the
predefined value, which is defined at an individual fault level causing 20% cooling

capacity degradation.

current _ feature — value

Normalized Fault Indicator =
- - predefined _ feature value

Although the predefined fault level is arbitrary, the author believes that a fault
causing 20% cooling capacity degradation is worthwhile to service.
The normalized fault indicator indicates the relative severity of the individual faults.
However, the refrigerant low charge is a system-level fault and its impact on overall
system performance is not only determined by its own charge level but also other faults,
so the indicator oscillates a lot. Fortunately, data collected so far shows that this
oscillation does not change the decision of the fault detection and diagnosis method.

The normalized fault indicators are plotted using color bars. When an indicator is
larger than the threshold, 0.2, it is plotted in red, otherwise in green. According to
experience, an indicated fault level with a performance degradation less than

0.2*20%=4% is not reliable.

4.2.2.3 System Performance & Safety Degradation Window (SPSDW)

Capacity and COP are usually used as criteria to indicate system performance.
The compressor is the most expensive part of the system and too much overheating
would result in safety problems such as bad lubrication and motor short-circuit. So
degradations of these three indices are plotted in this window. The capacity and COP

degradations are defined by,
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normal _value — current _value

normal _value

The normal value is predicted using an overall system performance model which
is built based on system manufacturer rating data. The model inputs are condenser inlet
air dry-bulb temperature and evaporator wet-bulb temperature.

The compressor overheat degradation is defined by,

current T, —normal T,

max_ AT,

The maximum AT, is found to be around 40 F by Chen’s data (2000), which

should be confirmed by more investigation. There is difficulty to predict normal values

for T, because there is no overall system state model available. For this demonstration,

it is assumed that the system driving condition is not changed much and the measured
value at the fault free condition is used as the normal value. Further research should be

done later to find an inexpensive safety indicator for a compressor.

4.2.2.4 FDD Report Window (FDDRW)

To help customers make a decision whether to service the diagnosed fault or not,
the FDD Report Window generates a tabular report for the FDD results including
diagnosed faults and relative severity indicators and system performance and safety
degradation indices, and provides an FDD recommendation. In this demo, the FDD
recommendation is based on performance and safety degradation. If the performance
degradation is over twenty per cent or the compressor is overheated up to ninety per cent,

service is recommended. More investigation is needed for fault recommendation.



4.2.2.5 Output of the FDD Demonstration

This section provides sample outputs of the FDD demonstration after each fault

was added and removed (watch the movie for details). Figure 4-15 captures a movie

frame when the system was running at low refrigerant charge (step 1 of section 4.2.3.1).

The FDDW indicates that there existed a refrigerant low charge fault whose fault severity
was around 0.45. The SPSDW plots the overall degradations, all of which were less than
20%. The FDDRW summarizes indicators and generates the FDD report table and

recommended that “although there is (are) fault(s) with minor impacts on overall system

performance, it may be not worthwhile to service so far”.
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Figure 4-15 Outputs of the FDD demonstration after introduction of low refrigerant

charge fault
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Figure 4-16 shows one frame after 30% of the condenser area was covered by
paper (step 2 of section 4.2.3.1). The FFSW shows that some part of the condenser area
was covered by paper. FDDW indicates that there existed two faults: refrigerant low
charge with the fault severity around 0.45 and condenser fouling with the fault severity
around 0.4. Since the overall performance degradations were less than 20% at this

moment (see SPSDW and FDDRW), service was not recommended (see FDDRW).
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Figure 4-16 Outputs of the FDD demonstration after introduction of condenser fouling
fault

Figure 4-17 shows one frame after the liquid line restriction fault was introduced
by closing the restriction valve until a twenty psi pressure drop was caused (step 3 of
section 4.2.3.1). The final position of the restriction valve can be seen from the FFSW

(see Figure 4-20 for the fully opening position). FDDW indicates that there existed three
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simultaneous faults: refrigerant low charge with the fault severity over 1.0, condenser
fouling with the fault severity around 0.5 and liquid line restriction fault with the severity
around 0.35. Since refrigerant charge fault is a system-level fault whose indicator was
impacted by other faults, the refrigerant low charge indicator value increased after the
liquid line restriction fault was introduced. Since the COP was degraded 21% at this
moment (see SPSDW and FDDRW), FDDRW recommended that: the system requires
more refrigerant, the condenser requires cleaning and the filter/drier requires replacement.
Although every individual fault was not severe enough to cause more than a 20%
performance degradation, the combination of three simultaneous faults aggravated overall

system performance degradations.

FDD Demo for Multiple-Simultaneous Faults

Fault Detection and Diagnosis Window Field Fault Simulation Window
1r
s 08}
®
i
i
= 06F
=
=
[
=
_g 0.4r
=
E
202
Lowe-Charge Cond-Foul LLine-Restr Comp-Leak
Individual Fault Name
System Performance & Safety Degradation Window FDD Report Window
T . . oottt ettt ;
— Cooling Capacity Degradation | . Diagnosed Fault{s) & Relative Severity Indicator(s)
—— COP Degradation [
i 08 ——  Compressor Overheat L Lowe-Charoe Cond-Foul LL-Restr
- - Fonnene Fonnene b-- i
E 121% 4% 35%
% 0e System Performance & Safety Degradation
:ﬁ Capacity Cop Compressor Overhesat
ﬁ 1% 21% 49%
e e RE LLERRR :
I} EDD Recomendation
E
£ oL Y - S SN+ SO S S System requires more refrigerant]
a Condenser requires cleaning!
Filter/Drier reguires replacement!
i} H H H

1 Ell &1 91 121 151 181 2N 21
Time { min )

Figure 4-17 Outputs of the FDD demonstration after introduction of liquid line restriction
fault
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Figure 4-18 shows one frame after the compressor leakage fault was introduced
by opening the discharge bypass valve until about 15% of refrigerant mass flow rate was
reduced (step 4 of section 4.2.3.1). FDDW indicates that there existed four simultaneous
faults: refrigerant low charge with the fault severity over 0.70, condenser fouling with the
fault severity around 0.5, liquid line restriction fault with the fault severity around 0.35
and compressor leakage fault with the fault severity around 0.5. Since the COP was
degraded 24% at this moment (see SPSDW and FDDRW), FDDRW recommended that:
the system requires more refrigerant, the condenser requires cleaning, the filter/drier

requires replacement and the compressor requires service.
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Figure 4-18 Outputs of the FDD demonstration after introduction of compressor leakage
fault
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Figure 4-19 shows one frame after the condenser fouling fault was removed (step
5 of section 4.2.3.1). It can be seen from FFSW that the paper covering the condenser
was removed. FDDW indicates that there existed three simultaneous faults: refrigerant
low charge with the fault severity over 0.60, liquid line restriction fault with the fault
severity around 0.3 and compressor leakage fault with the fault severity around 0.8. Since
both cooling capacity and COP were degraded 21% at this moment (see SPSDW and
FDDRW), FDDRW recommended that: the system requires more refrigerant, the

filter/drier requires replacement and the compressor requires service.
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Figure 4-19 Outputs of the FDD demonstration after removal of condenser fouling fault

Figure 4-20 shows one frame after the liquid line restriction fault was removed by

opening the liquid line restriction valve (step 6 of section 4.2.3.1). The final restriction
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valve position can be seen from FFSW (refer to Figure 4-17 for the fully closing position).
FDDW indicates that there existed two simultaneous faults: refrigerant low charge with
the fault severity over 0.35 and compressor leakage fault with the fault severity around
0.8. Since COP was degraded 20% at this moment (see SPSDW and FDDRW), FDDRW

recommended that the system requires more refrigerant and the compressor requires

service.
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Figure 4-20 Outputs of the FDD demonstration after removal of liquid line restriction
fault

Figure 4-21 shows one frame after the compressor leakage fault was removed by
closing the discharge line bypass valve (step 7 of section 4.2.3.1), which was restored to

step 1 of section 4.2.3.1. FDDW indicates that there existed one fault, refrigerant low



74

charge with the fault severity over 0.45. Since the overall performance degradation was

less than 20% at this moment (see SPSDW and FDDRW), no service is recommended.
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Figure 4-21 Outputs of the FDD demonstration after removal of compressor leakage fault

Figure 4-22 shows one frame after the system was charged up to the nominal level.

FDDW indicates that there existed no fault. FDDRW reported that the system was

running normally.
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4.2 .3 Results for California Field Sites

Section 4.2.1 validated the decoupling scheme using laboratory data and section
4.2.2 demonstrated the whole approach by artificially introducing faults at the Purdue
field emulation site. This section applies the FDD approach to California field sites.
Section 4.2.3.1 presents detailed results for one example site, Milpitas McDonalds

restaurant, and section 4.2.3.2 summarizes the FDD results for other sites.

4.2.3.1 Milpitas McDonalds Field Site

This site is located in Oakland, California. A 6-ton York rooftop unit is installed
for this McDonalds restaurant. A Copeland scroll compressor and a TXV are used in this
RTU. Data collected from April to October in 2002 were used to do FDD. After filtering
the transient data by a steady-state detector and removing the bad data corrupted by the
acquisition equipment, 1119 data points (one data point every five minutes) were retained.
Since the RTU has been installed for several years, faults have been fully developed.
Unlike the Purdue field emulation site, results of this site are presented in the statistical
sense. That is, histogram bar plots are used to present the results.

Figure 4-23 plots the normalized fault indicator for a liquid-line restriction fault.
It can be seen that all the steady-state data points are located at the right of the red dotted
line, FDD threshold (0.2) and the mean value is around 0.8. That is, all steady-state points
indicate that the liquid-line is restricted. Most likely the filter or drier is clogged by debris.
If this fault happened individually, it would result in about a 16% cooling capacity
degradation.

Figure 4-24 plots the normalized fault indicator for refrigerant charge faults.
Similar to Figure 4-23, all the steady-state data points are located at the right of the FDD
threshold and the mean value is about 1.6, which means that the system charge is very
low. If this fault happened individually, it would result in about 32% cooling capacity
degradation. However, since refrigerant charge faults are system level faults, their

indicator is impacted by other faults.
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Figure 4-23 Histogram bar plot of the normalized fault indicator for liquid line restriction
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Figure 4-25 plots the normalized fault indicator for a condenser fouling fault. It
can be seen that most of the steady-state data points (>95%) are at the right of the FDD
threshold and the mean value is about 0.5, which indicates that the condenser is a little
dirty. If this fault happened individually, it would result in about 10% cooling capacity
degradation.

Figure 4-26 plots the normalized fault indicator for a compressor valve leakage
fault. It can be seen that all the steady-state data points are at the left of FDD threshold
and the mean value is about -0.7, which indicates that the compressor works properly and
the compressor has about 15% heat loss. However, according to heat transfer analysis and
our experience with laboratory data, compressors installed in York and Trane RTUs have
very small heat, less than 5% of the power input and even gain some heat at some
operating conditions. The explanation for this discrepancy is probably that the discharge
line temperature is not measured accurately using the RTD temperature sensor.
Deliverable 2.1.5 discusses the RTD measuring issue and presents a correction approach.
However, Figure 4-26 shows that the discharge line temperature is not corrected

accurately as well, which is because the sensor is not installed properly.
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Figure 4-25 Histogram bar plot of the normalized fault indicator for condenser fouling
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Figure 4-26 Histogram bar plot of the normalized fault indicator for compressor valve
leakage

In summary, the system has three faults, low refrigerant charge, liquid line
restriction and condenser fouling. To assess the impact of the diagnosed faults on the
overall system performance, Figure 4-27 plots the cooling capacity degradation. It can be
seen that the system cooling capacity was degraded 23~45% and the average is about
32%, which is coincident with the value indicated by refrigerant charge fault indicator.
The cooling capacity degradation can be confirmed by investigating the return air
temperature and system running time. It can be seen from Figure 4-28 that the average
return air temperature is around 78 F and the highest is 88 F, which does not satisfy the
comfort criteria. From Figure 4-29, it can be seen that the system kept running
continuously for a long time (average is 2.5 hours and maximum is up to 9 hours) in
order to remove the heat load. So, from the comfort criteria, service should be done to

correct the diagnosed faults in order to maintain comfort.



Figure 4-27 Histogram bar plot of the normalized fault indicator for cooling capacity
degradation

Figure 4-28 Histogram bar plot of the return air temperature
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Figure 4-29 Histogram bar plot of the continuous running time between off-cycles of the
RTU

In addition to the comfort criteria, Figure 4-30 plots an economic criterion, EER
degradation. It can be seen that the system EER degraded about 10~40%, which depends
on the operating conditions. Compared with the cooling capacity degradation, the EER
degradation was a little smaller. This is because the power consumption was reduced a
little but less than the degradation of cooling capacity when the refrigerant mass flow rate
was reduced due to faults. Figure 4-31 plots the system power consumption reduction.
The average power consumption reduction is about 15%, which is smaller than the
average cooling capacity degradation of 32%. In sum, the average EER degradation is
21%, which is a pretty large economic loss. A rough and conservative estimate in Chapter
5 shows that a direct operation savings would be $252/year for this economical
application (in North California), which does not consider the dangerous impact of faults
on compressor safety (cost about $1000 to replace a compressor). Since multiple-service
costs to add some refrigerant, replace the filter/drier, and clean the condenser are around
$500, service to correct the faults is justified. In summary, from both comfort and

economic criteria, it is justified to correct the diagnosed faults as soon as possible.



Figure 4-30 Histogram bar plot of the normalized fault indicator for EER degradation

Figure 4-31 System power consumption reduction
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4.2.3.2 Summarized Results for Other Sites

Since some necessary information about compressor and TXV and system
configuration is not available so far, the decoupling-based FDD approach was partially
applied to the other sites. Comprehensive FDD results and economic assessment will be
provided after all the necessary information is obtained. Similar to Milpitas site, data
collected from April to October in 2002 were used to do analysis for the following sites
except for the Walgreens Anaheim site, which is based on data collected in 2003.

There are two modular school sites at Woodland and Oakland. At each site there
are two 3.5-ton Bard wall-mounted heat-pump RTUs (WH421-A). Table 4-1 summarizes
the FDD results for these two sites.

Table 4-1 FDD results of Modular School sites

Faults Woodland Oakland
RTU1 RTU2 RTU1 RTU2
Refrigerant Normal Normal Normal Over Charge
Charge
L1qu1§1-l} he Restriction Seyerg Restriction Normal
Restriction Restriction
Evapo'rator Normal Normal Normal Fouling
Fouling
Recommended | yet Arrange Not yet Arrange Service
Service Service

Similar to the Milpitas McDonalds site, the Bradshaw McDonalds site uses a 6-
ton York RTU. Both Castro Valley and Watt Avenue McDonalds sites have two York
two-stage RTUs, but only one RTU in each site was configured for FDD investigation
(one is 10 tons and the other is 11 tons). Table 4-2 summarizes the FDD results for these
three McDonalds sites.

There are five Trane heat-pump RTUs (one is 6.25 tons and other four are 7.25
tons) installed at the Walgreens Rialto and Anaheim sites. Tables 4-3 and 4-4 summarize

the FDD results for these sites.



Table 4-2 FDD results of McDonalds Restaurant Sites
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Castro Valley Watt Avenue
Faults Bradshaw Stage 1 Stage 2 Stage 1 Stage 2
Refrigerant Low Charge Normal Normal Low Charge Normal
Charge
L1qu1§1-1} ne Restriction Normal Normal Normal Normal
Restriction
Recommended Arrar}ge NA NA Not yet NA
Service Service
Table 4-3 FDD results of Walgreen Retail Store Sites at Rialto
RTUI1 RTU2 RTU3 RTU4 RTUS
Refrigerant Extremely
Charge Low Charge Low Charge | Normal | Normal Over Charge
L1qu1§1—1} ne Normal Sm.au Normal | Normal Normal
Restriction Restriction
Recommended Reqqlre Arrapge NA NA Not yet
Service Service Service
Table 4-4 FDD results of Walgreen Retail Store Sites at Anaheim
RTUI1 RTU2 RTU3 RTU4 RTUS
Refrigerant Low
Charge Low Charge | Low Charge | Normal Charge Normal
Liquid-line Small Severe Small Small Small
Restriction Restriction | Restriction | Restriction | Restriction Restriction
Recommended Arrar}ge Reqqlre Not yet Arrar}ge Not yet
Service Service Service Service

In summary, initial investigation shows that faults happen very frequently at the

field sites. For example, eleven of the twenty-one investigated RTUs have liquid line

restriction faults, ten of them have refrigerant charge faults, and eight of them have more

than two simultaneous faults. Nine of the twenty-one investigated RTUs justify service

immediately.
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5 ECONOMIC ASSESSMENTS

Since the primary consequences of faults in HVAC systems are economic, FDD

systems must be assessed based upon economic considerations. In order to performed

economic assessments, the following factors should be considered:

L.

RTU systems are relatively inexpensive, around $750-1000 per ton for installed
equipment. A 6-ton RTU only costs about $5000. As a result, it is difficult to
persuade RTU manufacturers or customers to spend an additional $300 for an
automated FDD.

Utility costs are not very significant compared to other costs for a business. For
the northern California McDonalds sites, the monthly utility costs for a 6-ton
RTU are about $100. For the southern California Walgreens site, the monthly
costs are around $600.

Service costs are very high, $115 for each visit plus $60/hour ($50~75/hour) for

service. For example, a three-hour service visit costs $295.

In order to perform economic assessments, the following assumptions were

employed:
L.

Service is required whenever the RTU cannot maintain comfort due to the
presence of one or more faults. This assumption implies that there is a high cost
associated with not maintaining comfort.

For a given building over a given time period, the cooling load is independent
of whether an RTU fault exists.

A technician will only detect and diagnose severe and obvious faults. In the

absence of preventative maintenance, technicians would typically be called to
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perform emergency service when an air conditioner is not working or is unable
to maintain comfort. Even if preventive maintenance is performed, the
procedures only involve routine checks that can only detect severe and obvious
faults. According to the analysis of California site data, some systems degraded
significantly due to faults which were not detected during preventive
maintenance service.

4. Compared with service costs, most HVAC hardware replacement costs are
small (with the exception of a faulty compressor). A liquid line filter/drier costs
around $15, while the labor fee for replacement costs about $300. An
evaporator filter costs around $2, while the labor fee for replacement costs $30.
R-22 refrigerant costs less than $2/Ib, while leak checking plus recharging costs
more than $400.

5. An automated FDD technique can detect and diagnose common faults, which

has been demonstrated through laboratory and field tests.

Based on the above assumptions, the following sections analyze the potential

savings associated with FDD.

5.1 Preventive Maintenance Inspection Savings (PMIS)

According to discussions with service technicians, regular preventive
maintenance inspections are often applied to RTU systems for commercial use. Table 5-1
lists the costs of planned preventative maintenance inspections done by a technician.
These costs only cover inspections and some easy maintenance. Power washing of
condenser and evaporator coils is quoted separately. It can be seen that the average
annual planned maintenance inspection costs are around $270.

If an automated FDD system were applied, most (e.g, 75%) of the planned
preventative maintenance inspection fees of $270 would be saved. If the average

equipment life for an RTU is 10 years, then the life-long preventive maintenance
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inspection savings would be $2,027 per RTU. This is a significant initial savings for FDD,

which is usually not considered.

Table 5-1 Planned Preventive Maintenance Costs

Location | No. of RTU | Total Annual Costs per Annual Costs

Costs ($) Inspection ($) | per RTU ($)
1 4 1,119.00 279.75 279.75
2 5 1,377.00 344.25 275.40
3 6 1,635.00 408.75 272.50
4 7 1,893.00 473.25 270.43
5 8 2,151.00 537.75 268.88
6 9 2,409.00 602.25 267.67
7 10 2,667.00 666.75 266.70
8 11 2,925.00 731.25 265.91
9 12 3,183.00 795.75 265.25

5.2 Operating Cost Savings (OCS)

Many systems are affected by faults that are not detected during preventive
maintenance inspections and that lead to significant system performance degradations.
For example, Proctor and Downey (see Levins, Rice, and Baxter, 1996) investigated
refrigerant charge levels in residential systems in California:

1. One study found that 31% of the units were undercharged and 69% were either

properly charged or overcharged.

2. Another study in 1990-1991 found that about 60% of the units were

undercharged or overcharged, and 40% were properly charged.

3. A third study found 22% undercharged units, 33% overcharged units, and 45%

properly charged units.

According to our initial investigation of California field sites, fifteen of the
twenty-one systems (71%) are significantly impacted by faults: eleven (52%) have
filter/drier restrictions, ten (48%) have refrigerant charge fault, and eight have (38%)
have both low charge and filter/drier restriction faults. As an example, the EER and

cooling capacity of the RTU at the Milpitas site degraded 21% and 30%, respectively.
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5.2.1 Utility Cost Savings (UCS)

Figure 5-1 illustrates the interrelationship among the system performance indices

and other factors. Generally speaking, the total cooling load of a specific building over a

specific time period, Q,, ., , 1s independent of the RTU cooling capacity, QCap , and its

operating status (fault or normal) as long as comfort conditions are maintained. However,
cooling capacity is very dependent on operating status (fault or normal). So, in order to
satisfy the cooling load, the RTU run time varies according to whether a fault exists or

not. If cooling capacity degrades due to one or more faults, the RTU must operate longer.

RTU Driving Supply Air
Conditions CFM
Ve R
........................ i - feccccccecerantteneiiianns .
EER Ocap W
........... L .
QLoad ... C EnergY_
1 Consumption
A
Time

Figure 5-1 Interrelationship among different factors affecting RTU performance

In order to estimate the impact on utility costs, the cooling load is related to the

average cooling capacity and total runtime according to equation (5-1).

1ot = Ocp ¥ T (5-1)

Power consumption, /¥, is also highly dependent on operating status (fault or

normal). The relationship between EER, W and QCap is given by equation (5-2).
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Oc,y =W x EER (5-2)

The energy consumption is estimated as the product of the average power

consumption (ITV) and the runtime (7 ) for mechanical cooling/heating according to

equation (5-3).
E=W xT (5-3)
Substituting equations (5-1) and (5-2) into equation (5-3) gives

E = QLoad

EER Shal

If the EER were degraded by a factor of o (EER,,, =(1-a)EER,,,,, ), then the energy

consumption would increase by a factor of

" . For example, if the EER degraded
-

21%, the energy consumption would increase 26.6% . In other words, if faults were
corrected the energy savings would be 26.6% . In general, the maximum energy savings

associated with maintaining the equipment at normal performance levels are

o o QLoad
L =—— xFE= X 5-5
Savings 1 1 E ER ( )

Normal

The cooling load can be related to the cooling capacity and run time according to

O oud = §Cup,Normal (1-pT (5-6)
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where S is a degradation factor for cooling capacity due to faults and Q'Cap' Norma 18 the

RTU cooling capacity for normal operation Substituting equation (5-6) into equation (5-

5) gives

a
E, . =
Savings (1 _ C()EER

éCap,Normal (1 - IH)T (5_7)

Normal

Neglecting demand costs, the utility cost savings (UCS) are calculated as

a —
UCS = ((1 _ CZ)EER QCap,Normal (1 - IB)T)Ce (5_8)

Normal

where C, is the cost of electricity ($/kWh). Neglecting demand savings is a conservative

assumption. Significantly greater utility cost savings would be possible if demand costs
were considered. Roughly, the weighted average utility rate between on-peak and mid-
peak periods in North California is 0.08$/kWh and that in South California is around
$0.21/kWh.

According to the simple relationship given in equation (5-8), the utility cost
savings associated with automated FDD applied to an individual RTU depend on the

following factors:

1. the normal ERR ( EER,,,,. ) and the degradation in EER due to the faults, « .

The lower the normal EER and the greater the EER degradation, the greater the
opportunity for utility cost savings. The savings are particularly sensitive to

the EER degradation factor.
2. the normal cooling capacity (ECHP_Norma,) and the degradations in cooling

capacity (/). Greater savings are associated with larger cooling capacities and
cooling capacity degradations.

3. runtime (7). Utility cost savings increase linearly with increasing runtime.
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4. electricity costs (C,). Utility cost savings increase linearly with increasing

energy Costs.

considered.

A similar result would apply to demand costs if they were

Table 5-2 gives estimates of utility cost savings for different buildings and

locations in California obtained with equation (5-8).

For these calculations, the

degradation factors determined for the RTU installed at Milpitas were used. This site uses

RTU a 6-ton York air conditioning system with a nominal EER equal to 9 and its EER

and cooling capacity degraded 21% and 30%, respectively due to faults. The runtimes for

different sites, which only include the operation time for mechanical cooling, are

estimated using data collected in 2002.

Table 5-2 Estimates of Utility Costs Savings for a 6-ton RTU A/C

Electricity ol Mont.hly Months Ann}lal Utl.hty
. Building | Runtime Runtime | Savings
Location Costs per
($/kWh) Type (hour per Year (hour per | per Year
month) year) (%)
Modular 120 4 480 57
North School
) . 0.08 Restaurant 150 6 900 107
California Retail
cal 300 6 1800 214
Store
Modular 180 5 900 281
South School
outh. 0.21 Restaurant 225 7 1575 492
California Retail
ctal 450 7 3150 985
Store

From Table 5-2, it can be seen that:

1. The savings are greater in southern California than in northern California,
because the climate is hotter and the electricity costs are higher. The

differences might be less if demand charges were included.
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2. The savings are greatest for retail store and lowest for the modular school. This
is because the retail store has the highest cooling loads and the modular school

has the lowest cooling loads.

5.2.2 Equipment Life Savings (ELS)

Faults can have a direct effect on equipment life through adverse operating
conditions associated with the compressor, such as high operating temperatures or liquid
entering the compressor. If the faults were severe enough to result in compressor failure,
it would be very costly (about $1,000 to replace a 6-ton compressor including labor fees).
However, it is difficult to quantitatively evaluate the impact of faults on the compressor
life. Faults also affect equipment life indirectly due to an increase in the required runtime
to maintain comfort. This effect is much easier to quantify. Rearranging equation (5-6)

gives the run time as

Oloud
T =— 5-9
QCap,Nnrmal (1 - ﬂ ) ( )

If the system cooling capacity were degraded by £, then the run time would

B

increase by -5 The equipment life is dictated by the run time, e.g., 8 (hours) * 30

(days) * 5 (months) * 10 (years) =12000 hours. Assuming an RTU cost of 750$/ton and
equipment life of 12,000 runtime hours, a unit cost per hour is $0.0625/ (ton-hour). Then,

the savings related to equipment life would be

ELS = 0.0625- O v %T (5-10)
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Table 5-3 lists estimates of equipment life savings for different building types and
locations in California, assuming characteristics of the RTU installed at Milpitas. From
Table 5-3, the savings potential associated with equipment life is comparable to the utility
cost savings and the trends are the same. This significant savings has not been considered
by other investigators. Even greater savings would result if the direct effect of faults on

equipment life were considered.

Table 5-3 Equipment life savings

o Mon‘Fhly Months Annpal Equlpment
. Building Runtime Runtime Savings
Location per
Type (hour per Year (hour per per Year
month) year) &)
Modular 120 4 480 77
North School
) . | Restaurant 150 6 900 145
California Retail
ctal 300 6 1800 289
Store
Modular 180 5 900 145
South School
. . | Restaurant 225 7 1575 253
California Retail
clal 450 7 3150 506
Store

5.3 Fault Detection and Diagnosis Savings (FDDS)

Without automated FDD, there are significant costs associated with a service
technician responding to an emergency call, performing a diagnosis, and providing
repairs. In addition, unnecessary service is sometimes performed due to inaccurate

diagnosis.

5.3.1 Unnecessary Service (USS)

Often, condenser cleaning and evaporator filter replacement occur on a regular
basis (e.g, twice a year). However, the rate of fouling depends on the environment and

the runtime of the unit. Furthermore, significant fouling is required before an impact on
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performance is realized. According to Breuker’s (1998a) investigation, cooling capacity
and COP only degraded 6.1% and 10%, respectively when 35% of the condenser area
was covered. Cleaning a condenser coil and replacing an evaporator filter costs about
$120 per service and is typically done twice a year. If automated FDD were applied,
service could be based upon a quantitative assessment of the impact and unnecessary
service could be reduced. If, for example, one regular service could be saved per year,

the savings would be $120 per year, which is significant compared to other costs.

5.3.2 Fault Diagnosis Savings (FDS)

Upon receiving an emergency call, a technician needs to go to the site, open the
system, and perform a diagnosis. Typically, service costs are calculated based upon a
charge for the visit (e.g., $115) plus an hourly rate (e.g., $65/hour). For example, to open
the system, check for refrigerant leakage and recover the system requires about four
hours. A four-hour service would cost about $375. There are three kinds of refrigerant
charge faults: refrigerant leakage, refrigerant low charge and refrigerant overcharge. The
former requires manual leakage checking, while the latter two could be diagnosed with an
automated FDD system. Furthermore, with the help of the automated FDD technique,
refrigerant could be added or removed without the requirement for recovering the entire
system charge, which is very time-consuming and costly. Table 5-4 lists the potential

savings for refrigerant charge faults associated with the use of automated diagnostics.

Table 5-4 Potential for Refrigerant Charge Fault Savings

Refrigerant Manual FDD Automated .
Charge Faults Cost§ Plus Cost§ Plus Savings ($)
Service ($) Service ($)
Leakage 375 150 225
Low Charge 375 75 300
Over Charge 375 75 300
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5.4 Smart Service Schedule Savings (SSSS)

Automated FDD has the benefit of allowing service to be scheduled in an
optimum manner. The primary savings are associated with reducing the number of

emergency and total service calls according to the following schemes:

1. Find a tradeoff between cost savings and service costs. If the savings do not
justify the service costs, service is not recommended. Since operating costs are
higher for southern California sites than in northern California, more frequent
service is expected.

2. Schedule multiple service tasks whenever possible. A significant part of the
cost is associated with making the service visit. Furthermore, certain tasks
should always be done in together. For example, replacing the filter/drier in
combination with repairing a refrigerant leak reduces service costs considerably
when compared to two separate service tasks. Table 5-5 lists potential savings

associated with multiple service tasks.

Table 5-5 Potential Savings for Multiple-Service

Individual Multiple .
Faults Service ($) Service ($) Savings ($)

Refrigerant

Leaﬁage 375

: - 500 250
Filter/Drier 375
Restriction
Coil Fouling 120 65 55

5.5 Total Equipment Life Savings (TELS)

As discussed in previous sections, potential savings for automated FDD include

the following:



1.

4.
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Planned preventive maintenance service savings, which are about $2,000 for
each RTU.

Operational cost savings, which include two parts: utility cost and equipment
life savings. The utility cost savings should include both energy and peak
demand savings. However, more work is needed to evaluate the peak demand
savings effect.

Fault detection and diagnosis savings, which include two parts: unnecessary
service savings and fault diagnosis savings.

Smart service schedule savings.

The last three items are difficult to quantify, because they are related to the rate of

occurrence and level of faults. As previously mentioned, around 60% of packaged

systems in California are improperly charged. According to our initial investigation of

California field sites, fifteen of the twenty-one systems (71%) are impacted by faults,

eleven of them (52%) are impacted by filter/drier restrictions, ten of them (48%) are

impacted by refrigerant charge faults, and eight of them (38%) are impacted by both low

charge and filter/drier restriction faults.

In order to quantify the net savings, the following conservative assumptions were

made:

1.
2.

10-year equipment life under normal operating conditions.

No replacement of major components, such as the compressor and fan motors
during the life of the equipment.

On average, the performance of the system is assumed to be degraded for 40%
of its lifetime with an FER and cooling capacity degradation of 21% and 30%,
respectively.

One coil cleaning service can be saved per year through automated FDD.

A 60% probability that a refrigerant charge fault will occur once during the
equipment lifetime.

A 60% probability that a filter/drier restriction fault will occur once during the

equipment lifetime.
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7. A 6-ton RTU having a cost of $4500.
8. A cost for the FDD system of $300.

The total equipment lifetime savings were estimated with the following steps:

1. Lifetime preventive maintenance service savings (PMIS),

10 (years)*0.75%270.28=$2,027

2. Lifetime operational costs savings (OCS), 0.4*10*(UCS+ELS). Table 5-6 list
the lifelong operation costs savings for different building types and locations.

3. Lifetime fault detection and diagnosis savings, which are the sum of

USS (10 (year)*120=1200)+FDS (0.6*(225+300+300)/3=165)=$1365

4. Lifetime smart service schedule savings (SSSS), 0.6*250+55*10=$700



Table 5-6 Equipment Lifetime Operational Savings

Utility | Equipment | Lifetime
Location Building Savings Savings Opergtlon
Type per Year | per Year Savings
&) &) &)
Modular 57 77 536
North School
) . | Restaurant 107 145 1008
California Retail
el 214 289 2012
Store
Modular 281 145 1704
South School
.Ou . | Restaurant 492 253 2980
California Retail
el 985 506 5964
Store
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The total lifetime net savings (see Table 5-7) are the total savings minus the cost
of the FDD system ($300). From Table 5-7, conservatives estimates of the lifetime net
savings range from $4000 to $10,000 per RTU, annual net savings range from $400 to
$1,000, and the payback period would be less than one year. The savings would be

greater for heat pumps because they operate through the whole year.



Table 5-7 Conservative Lifetime Total Savings per RTU (6-ton)

Locatio, | Building | PMIS | OCS | FDDS | $SSS | TELS Saljie;gs
Type ($) %) %) (%) (%) )
Modular 536 4628 | 4328
North School
O MRestaurant 1008 5100 | 4.800
California Retail
etal 2012 6,104 | 5804
Store
Modul 2,027 1365 700
oduiar 1704 5796 | 5,496
South School
Outh  "Restaurant 2980 7072 | 6772
California Rotail
ctal 5964 10,056 | 9,756

Store

99
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6 SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

The following work was completed during this project:

. A literature review about FDD application in HVAC&R was conducted in order to
enhance the understanding of FDD. (Chapter 1 and Deliverables 2.1.3 & 2.1.4)

. More than twenty field-sites, with unit one at Purdue and 20 units in California,
were set up. The Purdue field-setup is meant to mimic field-setups in California in
order to aid in the identification of installation and operational problems locally.
The field-sites in California have different building occupancies, climate
conditions, and packaged air conditioning equipment from different manufacturers
(Deliverables 2.1.1a & 2.1.1b).

The FDD problem has been formulated in a mathematical way and a decoupling-
based unified FDD technique was proposed to handle multiple-simultaneous faults
and provide a more generic and system-independent method (Deliverables 2.1.5).
The SRB method was re-examined in detail and then two new fault detection and
diagnostic classifiers were presented that are simpler to implement and provide
improved FDD sensitivity as compared with the original SRB method (Deliverables
2.1.3 & 2.1.4 and ASHRAE paper)

. Various component models and virtual sensors were proposed to estimate features
and overall system performance indices at low cost. For situations where physical
or map-based models are not practical, a Polynomial plus GRNN modeling
approach was developed that provides both good interpolation and extrapolation
performance when training data are readily available (Deliverable 2.1.2 and Li and

Braun (2002)).
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5. Three case studies were investigated to validate the proposed approaches.
(Deliverable 2.1.5). One case study provided initial validation of the decoupling-
based FDD approach using laboratory data where single faults were artificially
introduced into a 3-ton Trane rooftop unit (RTU) with a fixed-orifice as the
expansion device. The second case study demonstrated the whole FDD
methodology by artificially introducing multiple-simultaneous faults into the
Purdue field emulation site, where a 5-ton York RTU with a TXV as the expansion
device is installed. Finally, the decoupling-based FDD approach was applied to
California field sites.

6. Finally, an initial economic assessment of the proposed FDD technique was
performed. Conservative estimates of the lifetime net savings ranged from $4,000
to $10,000 per RTU, with annual net savings ranging from $400 to $1,000 and a

payback period of less than one year.

Research on further improvements and evaluations of the FDD methodology will

continue as follows:

1. Obtain more detailed RTU information for all the California field sites and apply
the proposed FDD technique more completely to these field sites.

2. Further improve the performance of the unified FDD technique by improving the
modeling approach that is based on manufacturers’ data and find an efficient and
practical way to tune these models using low-cost sensors. Improve other virtual
sensors’ performance and consider trying to remove pressure and humidity sensors.

3. Improve the overall performance model for assessing performance degradations of
packaged air conditioning equipment under faulty operation using limited sensor
and manufacturers’ rating data.

4. Expand the service cost database and build a more detailed economic assessment
model to more accurately evaluate the potential savings associated with the FDD

technique and to provide guidelines for the fault evaluation and decision step.
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5. Conduct more field tests under multiple-simultaneous faults and, if necessary,
conduct more laboratory tests to test the proposed decoupling-based FDD
technique.

6. Consider additional control related diagnoses, such as economizer and controller

diagnoses.
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